Publications by authors named "Mersmann F"

Purpose: Imbalances of muscle strength and tendon stiffness can increase the operating strain of tendons and risk of injury. Here, we used a new approach to identify muscle-tendon imbalances and personalize exercise prescription based on tendon strain during maximum voluntary contractions (ε) to mitigate musculotendinous imbalances in male adult volleyball athletes.

Methods: Four times over a season, we measured knee extensor strength and patellar tendon mechanical properties using dynamometry and ultrasonography.

View Article and Find Full Text PDF

Human tendons adapt to mechanical loading, yet there is little information on the effect of the temporal coordination of loading and recovery or the dose-response relationship. For this reason, we assigned adult men to either a control or intervention group. In the intervention group, the two legs were randomly assigned to one of five high-intensity Achilles tendon (AT) loading protocols (i.

View Article and Find Full Text PDF

Muscle synergies as functional low-dimensional building blocks of the neuromotor system regulate the activation patterns of muscle groups in a modular structure during locomotion. The purpose of the current study was to explore how older adults organize locomotor muscle synergies to counteract unpredictable and predictable gait perturbations during the perturbed steps and the recovery steps. Sixty-three healthy older adults (71.

View Article and Find Full Text PDF

Previous in vitro and in situ studies have reported a shift in optimal muscle fibre length for force generation (L) towards longer length at decreasing activation levels (also referred to as length-dependent activation), yet the relevance for in vivo human muscle contractions with a variable activation pattern remains largely unclear. By a combination of dynamometry, ultrasound and electromyography (EMG), we experimentally obtained muscle force-fascicle length curves of the human soleus at 100%, 60% and 30% EMG levels from 15 participants aiming to investigate activation-dependent shifts in L in vivo. The results showed a significant increase in L of 6.

View Article and Find Full Text PDF

An imbalanced adaptation of muscle strength and tendon stiffness in response to training may increase tendon strain (i.e., the mechanical demand on the tendon) and consequently tendon injury risk.

View Article and Find Full Text PDF

The soleus is the main muscle for propulsion during human running but its operating behavior across the spectrum of physiological running speeds is currently unknown. This study experimentally investigated the soleus muscle activation patterns and contractile conditions for force generation, power production and efficient work production (i.e.

View Article and Find Full Text PDF

Imbalances between muscle strength and tendon stiffness may cause high-level tendon strain during maximum effort muscle contractions and lead to tendon structural impairments and an increased risk for tendinopathy in adolescent athletes. However, it remains unclear whether the development of musculotendinous imbalances is influenced by sex. At four measurement time points during a competitive season, we measured quadriceps femoris muscle strength and patellar tendon mechanical properties in 15 female (14.

View Article and Find Full Text PDF

Background: High tendon strain leads to sub-rupture fatigue damage and net-catabolic signaling upon repetitive loading. While high levels of tendon strain occur in adolescent athletes at risk for tendinopathy, a direct association has not yet been established. Therefore, in this prospective longitudinal study, we examined the hypothesis that adolescent athletes who develop patellar tendon pain have shown increased levels of strain in advance.

View Article and Find Full Text PDF

The objective of the study was to explore how biarticular mechanisms of the gastrocnemii muscles may provide an important energy source for power and work at the ankle joint with increasing running speed. Achilles tendon force was quantified as a proxy of the triceps surae muscle force and the contribution of the monoarticular soleus and the biarticular gastrocnemii to the mechanical power and work performed at the ankle joint was investigated in three running speeds (transition 2.0 m s, slow 2.

View Article and Find Full Text PDF

Increasing walking speed is accompanied by an increase of the mechanical power and work performed at the ankle joint despite the decrease of the intrinsic muscle force potential of the soleus (Sol) and gastrocnemius medialis (GM) muscles. In the present study, we measured Achilles tendon (AT) elongation and, based on an experimentally determined AT force-elongation relationship, quantified AT force at four walking speeds (slow 0.7 m.

View Article and Find Full Text PDF

Tendon strain during exercise is a critical regulatory factor in tendon adaptive responses and there are indications for an optimal range of strain that promotes tendon adaptation. Back squats are used to improve patellar tendon properties in sport and clinical settings. To date, the operating patellar tendon strain during back squats is unknown and current recommendations for individual exercise loading are based on the one repetition maximum (1RM).

View Article and Find Full Text PDF

The consideration of the Achilles tendon (AT) curvature is crucial for the precise determination of AT length and strain. We previously established an ultrasound-kinematic-based method to quantify the curvature, using a line of reflective foil skin markers covering the AT from origin to insertion. The current study aimed to simplify the method by reducing the number of markers while maintaining high accuracy.

View Article and Find Full Text PDF

Purpose: The current study investigated the effects of long-term athletic training on the development of the triceps surae muscle-tendon unit in preadolescence.

Methods: Eleven preadolescent untrained children and a group of 21 artistic gymnastics athletes of similar age (9 ± 1.7 yr) and maturity (Tanner stages I and II) participated in the study.

View Article and Find Full Text PDF

The applicability of a simplified approach for muscle volume assessment, based on multiplying muscle length, maximum anatomical cross-sectional area (ACSA) and a muscle-specific shape factor, was investigated in the present study for the vastus lateralis muscle of early-adolescent boys. Muscle length, ACSA and volume were calculated from magnetic resonance image muscle reconstructions of early-adolescent athletes (n = 14) and untrained peers (n = 10). A cohort-specific shape factor was obtained from the ratio of the measured volume and the product of ACSA and muscle length, which did not differ significantly between trained and untrained adolescents despite significant differences in anthropometry and muscle dimensions.

View Article and Find Full Text PDF

Human running features a spring-like interaction of body and ground, enabled by elastic tendons that store mechanical energy and facilitate muscle operating conditions to minimize the metabolic cost. By experimentally assessing the operating conditions of two important muscles for running, the soleus and vastus lateralis, we investigated physiological mechanisms of muscle work production and muscle force generation. We found that the soleus continuously shortened throughout the stance phase, operating as work generator under conditions that are considered optimal for work production: high force-length potential and high enthalpy efficiency.

View Article and Find Full Text PDF

High-level patellar tendon strain may cause impairments of the tendon's micromorphological integrity in growing athletes and increase the risk for tendinopathy. This study investigated if an evidence-based tendon exercise intervention prevents high-level patellar tendon strain, impairments of micromorphology and pain in adolescent basketball players (male, 13-15 years). At three time points over a season (M1-3), tendon mechanical properties were measured using ultrasound and dynamometry, proximal tendon micromorphology with a spatial frequency analysis and pain and disability using VISA-P scores.

View Article and Find Full Text PDF

Imbalances of muscle strength and tendon stiffness may increase the risk for patellar tendinopathy in growing athletes. The present study investigated if a functional high-load exercise intervention, designed to facilitate tendon adaptation and reduce muscle-tendon imbalances, may prevent patellar tendon pain in adolescent male handball players (12-14 years). Tendon pain prevalence (using VISA-P scores), knee extensor strength, vastus lateralis (VL) architecture and patellar tendon mechanical properties were measured at four measurement time points (M1-M4) over a season.

View Article and Find Full Text PDF

The purpose of the current study was to assess in vivo Achilles tendon (AT) mechanical loading and strain energy during locomotion. We measured AT length considering its curve-path shape. Eleven participants walked at 1.

View Article and Find Full Text PDF

During human running, the soleus, as the main plantar flexor muscle, generates the majority of the mechanical work through active shortening. The fraction of chemical energy that is converted into muscular work (enthalpy efficiency) depends on the muscle shortening velocity. Here, we investigated the soleus muscle fascicle behaviour during running with respect to the enthalpy efficiency as a mechanism that could contribute to improvements in running economy after exercise-induced increases of plantar flexor strength and Achilles tendon (AT) stiffness.

View Article and Find Full Text PDF

Age-related impairments of reactive motor responses to postural threats and reduced muscular capacities of the legs are key factors for the higher risk of falling in older people. It has been evidenced that a training of dynamic stability in the presence of perturbations has the potential to improve these deficits. However, the time course of training effects during such interventions is poorly understood.

View Article and Find Full Text PDF

Adolescent athletes can feature significantly greater muscle strength and tendon stiffness compared to untrained peers. However, to date, it is widely unclear if radial muscle and tendon hypertrophy may contribute to loading-induced adaptation at this stage of maturation. The present study compares the morphology of the vastus lateralis (VL) and the patellar tendon between early-adolescent athletes and untrained peers.

View Article and Find Full Text PDF

In the current study, we investigated the effect of lengthening velocity during eccentric exercise on the modulation of the physiological cross-sectional area (PCSA) and fascicle length of the vastus lateralis (VL) muscle. We hypothesized a greater increase in muscle PCSA after training with lower lengthening velocities and a greater increase in fascicle length after higher lengthening velocities. Forty-seven young men were randomly assigned to either a control (n = 14) or an intervention group (n = 33).

View Article and Find Full Text PDF

Purpose: Evidence on training-induced muscle hypertrophy during preadolescence is limited and inconsistent. Possible associations of muscle strength and tendon stiffness with jumping performance are also not investigated. We investigated the thickness and pennation angle of the gastrocnemius medialis muscle (GM), as indicators for potential muscle hypertrophy in preadolescent athletes.

View Article and Find Full Text PDF