We recently demonstrated that chemical proteasome inhibition induced inner retinal degeneration, supporting the pivotal roles of the ubiquitin-proteasome system in retinal structural integrity maintenance. In this study, using beclin1-heterozygous (-Het) mice with autophagic dysfunction, we tested our hypothesis that autophagy could be a compensatory retinal protective mechanism for proteasomal impairment. Despite the reduced number of autophagosome, the ocular tissue morphology and intraocular pressure were normal.
View Article and Find Full Text PDFMyelopoiesis is invariably present and contributes to pathology in animal models of graft-versus-host disease (GVHD). In humans, a rich inflammatory infiltrate bearing macrophage markers has also been described in histological studies. In order to determine the origin, functional properties, and role in pathogenesis of these cells, we isolated single-cell suspensions from acute cutaneous GVHD and subjected them to genotype, transcriptome, and in vitro functional analysis.
View Article and Find Full Text PDFRecently a G-protein-coupled receptor, MAS Related GPR Family Member X2 (MRGPRX2), was identified as a specific receptor on human mast cells responsible for IgE independent adverse drug reactions (ADR). Although a murine homologue, Mrgprb2, has been identified for this receptor, its affinity for many ADR-causing drugs is poor making it difficult to undertake in vivo studies to examine mechanisms of ADR and to develop therapeutic strategies. Here, we have created humanized mice capable of generating MRGPRX2-expressing human MCs allowing for the study of MRGPRX2 MCs-mediated ADR in vitro as well as in vivo.
View Article and Find Full Text PDFEzh2, a well-established epigenetic repressor, can down-regulate leukocyte inflammatory responses, but its role in cutaneous health remains elusive. Here we demonstrate that Ezh2 controls cutaneous tolerance by regulating Langerhans cell (LC) transmigration across the epidermal basement membrane directly via Talin1 methylation. Ezh2 deficiency impaired disassembly of adhesion structures in LCs, leading to their defective integrin-dependent emigration from the epidermis and failure in tolerance induction.
View Article and Find Full Text PDFBats are an important animal model with long lifespans, low incidences of tumorigenesis and an ability to asymptomatically harbour pathogens. Currently, in vivo studies of bats are hampered due to their low reproduction rates. To overcome this, we transplanted bat cells from bone marrow (BM) and spleen into an immunodeficient mouse strain NOD-scid IL-2R (NSG), and have successfully established stable, long-term reconstitution of bat immune cells in mice (bat-mice).
View Article and Find Full Text PDFMouse models have contributed to the bulk of knowledge on Systemic Lupus Erythematosus (SLE). Nevertheless, substantial differences exist between human and mouse immune system. We aimed to establish and characterise a SLE model mediated by human immune system.
View Article and Find Full Text PDFBackground: The homozygous K108E mutation of interferon regulatory factor 8 (IRF8) is reported to cause dendritic cell (DC) and monocyte deficiency. However, more widespread immune dysfunction is predicted from the multiple roles ascribed to IRF8 in immune cell development and function.
Objective: We sought to describe the effect on hematopoiesis and immunity of the compound heterozygous R83C/R291Q mutation of IRF8, which is present in a patient with recurrent viral infection, granuloproliferation, and intracerebral calcification.
Dendritic cells (DC) are professional antigen-presenting cells that orchestrate immune responses. The human DC population comprises two main functionally specialized lineages, whose origins and differentiation pathways remain incompletely defined. Here, we combine two high-dimensional technologies-single-cell messenger RNA sequencing (scmRNAseq) and cytometry by time-of-flight (CyTOF)-to identify human blood CD123CD33CD45RA DC precursors (pre-DC).
View Article and Find Full Text PDFDendritic cells (DCs) are specialized leukocytes with antigen-processing and antigen-presenting functions. DCs can be divided into distinct subsets by anatomical location, phenotype and function. In human, the two most accessible tissues to study leukocytes are peripheral blood and skin.
View Article and Find Full Text PDFA cytosolic role for the histone methyltransferase Ezh2 in regulating lymphocyte activation has been suggested, but the molecular mechanisms underpinning this extranuclear function have remained unclear. Here we found that Ezh2 regulated the integrin signaling and adhesion dynamics of neutrophils and dendritic cells (DCs). Ezh2 deficiency impaired the integrin-dependent transendothelial migration of innate leukocytes and restricted disease progression in an animal model of multiple sclerosis.
View Article and Find Full Text PDFLangerhans cells (LCs) are self-renewing in the steady state but repopulated by myeloid precursors after injury. Human monocytes give rise to langerin-positive cells in vitro, suggesting a potential precursor role. However, differentiation experiments with human lineage-negative cells and CD34(+) progenitors suggest that there is an alternative monocyte-independent pathway of LC differentiation.
View Article and Find Full Text PDFDendritic cells (DCs) are specialized antigen presenting cells abundant in peripheral tissues such as skin where they function as immune sentinels. Skin DCs migrate to draining lymph node where they interact with naïve T cells to induce immune responses to microorganisms, vaccines, tumours and self-antigens. In this review, we present the key historical developments and recent advances in human skin DC research.
View Article and Find Full Text PDFDendritic cells (DCs), monocytes, and macrophages are leukocytes with critical roles in immunity and tolerance. The DC network is evolutionarily conserved; the homologs of human tissue CD141(hi)XCR1⁺ CLEC9A⁺ DCs and CD1c⁺ DCs are murine CD103⁺ DCs and CD64⁻ CD11b⁺ DCs. In addition, human tissues also contain CD14⁺ cells, currently designated as DCs, with an as-yet unknown murine counterpart.
View Article and Find Full Text PDFDendritic cells (DCs), macrophages (Mφ), and T cells are major components of the skin immune system, but their interstitial spatial organization is poorly characterized. Using four-channel whole-mount immunofluorescence staining of the human dermis, we demonstrated the three-dimensional distribution of CD31(+) blood capillaries, LYVE-1(+) lymphatics, discrete populations of CD11c(+) myeloid DCs, FXIIIa(+) Mφ, and lymphocytes. We showed phenotypic and morphological differences in situ between DCs and Mφ.
View Article and Find Full Text PDFLipid rafts are plasma membrane microdomains that are enriched in cholesterol, glycosphingolipids, and glycosylphosphatidylinositol-anchored proteins and play an important role in the signaling of ITAM-bearing lymphocyte antigen receptors. Dectin-1 is a C-type lectin receptor (CLR) that recognizes beta-glucan in the cell walls of fungi and triggers signal transduction via its cytoplasmic hemi-ITAM. However, it is not known if similar to antigen receptors, Dectin-1 would also signal via lipid rafts and if the integrity of lipid raft microdomains is important for the physiological functions mediated by Dectin-1.
View Article and Find Full Text PDF