Publications by authors named "Merry Christie"

The development of pharmaceutical products is the critical bridge that moves a potential new medicine from academic discovery to applied treatment of patients. It translates an idea for a new drug to bench-level research on how it can be manufactured, formulated, characterized and controlled for use in non-clinical and early clinical trials. From pre-clinical R&D discovery work through the commercial launch, substantial R&D CMC data is generated to develop and optimize cGMP manufacturing and testing operations, while also supporting product comparability, elucidating product / impurity structures, assessing critical quality attributes, developing the drug delivery mode, and developing the product formulation for long-term stability.

View Article and Find Full Text PDF

A paradox in monoclonal antibody (mAb) therapy is that despite the well-documented tolerogenic properties of deaggregated IgG, most therapeutic IgG mAb induce anti-mAb responses. To analyze CD4 T cell reactions against IgG in various physical states, we developed an adoptive transfer model using CD4+ T cells specific for a Vκ region-derived peptide in the hapten-specific IgG mAb 36-71. We found that heat-aggregated or immune complexes (IC) of mAb 36-71 elicited anti-idiotypic (anti-Id) antibodies, while the deaggregated form was tolerogenic.

View Article and Find Full Text PDF

Human serum albumin (HSA) is an excipient present in formulations of several recombinant protein products that are approved for clinical use. We investigated the relative contributions of HSA and HSA particles to the generation of antibody responses against recombinant human erythropoietin (rhEPO) and the excipient HSA itself. Protein samples were characterized before injection for quantities of monomeric proteins, soluble protein aggregates, and nano- and micron-sized particles.

View Article and Find Full Text PDF

Evaluation and mitigation of the risk of immunogenicity to protein aggregates and particles in therapeutic protein products remains a primary concern for drug developers and regulatory agencies. To investigate how the presence of protein particles and the route of administration influence the immunogenicity of a model therapeutic protein, we measured the immune response in mice to injections of formulations of recombinant murine growth hormone (rmGH) that contained controlled levels of protein particles. Mice were injected twice over 6 weeks with rmGH formulations via the subcutaneous, intraperitoneal, or intravenous (i.

View Article and Find Full Text PDF