Background Military personnel post-deployment to Iraq and Afghanistan have noted new-onset respiratory illness. This study's primary objective was to further develop an animal model of Iraq Afghanistan War Lung Injury (IAW-LI) and to test a novel class of anti-injury drug called RuX. Methods Particulate Matter (PM) samples were obtained in Iraq then characterized by spectromicroscopy.
View Article and Find Full Text PDFExposure of the heart to ionizing radiation can cause adverse myocardial remodeling. In small animal models, local heart irradiation causes persistent alterations in cardiac mitochondrial function and swelling. POLY-MVA is a dietary supplement that contains a palladium lipoic acid complex that targets mitochondrial complex I and has been demonstrated to have greater redox potential than lipoic acid alone.
View Article and Find Full Text PDFThe mechanism of interaction of lipoic acid-palladium complex (LAPd) with double-stranded DNA (dsDNA), as well as the adsorption process and the redox behaviour of LAPd, of its ligand lipoic acid (LA), and of the LAPd-containing dietary supplement, Poly-MVA, were studied using atomic force microscopy (AFM) and voltammetry at highly oriented pyrolytic graphite (HOPG) and glassy carbon electrodes. In the presence of small concentrations of LAPd molecules, the dsDNA molecules appeared less knotted and bended, and more extended on the HOPG surface, when compared with the dsDNA molecules adsorbed from the same dsDNA solution concentration. The voltammetric results demonstrated the interaction of both LAPd and Poly-MVA with dsDNA, but no oxidative damage caused to dsDNA was detected.
View Article and Find Full Text PDF