All vaccines and other biological products contain contaminating residual DNA derived from the production cell substrate. Whether this residual cell-substrate DNA can induce tumors in vaccine recipients and thus represent a risk factor has been debated for over 50 years without resolution. As a first step in resolving this issue, we have generated expression plasmids for the activated human H-ras oncogene and for the murine c-myc proto-oncogene.
View Article and Find Full Text PDFThe covalent modification of proteins by the small ubiquitin-like protein SUMO has been implicated in the regulation of numerous biological processes, including nucleocytoplasmic transport, genomic stability, and gene transcription. Sumoylation occurs by a multienzyme process similar to ubiquitination and, in Saccharomyces cerevisiae, is reversed by desumoylating enzymes encoded by the Ulp1 and Smt4/Ulp2 genes. The physiological importance of desumoylation has been revealed by mutations in either gene, which lead to nonoverlapping defects in cell cycle transition and meiosis.
View Article and Find Full Text PDFDrm/Gremlin and Dan, two homologous secreted antagonists of bone morphogenic proteins, have been shown to regulate early development, tumorigenesis, and renal pathophysiology. In this study, we report that Drm and Dan physically and functionally interact with Slit1 and Slit2 proteins. Drm binding to Slits depends on its glycosylation and is not interfered with by bone morphogenic proteins.
View Article and Find Full Text PDFMost human cancers express telomerase but its activity is highly variable and regulated by complex mechanisms. Recently, we have proposed that Ets proteins may be important for regulation of telomerase activity in leukemic cells. Here we provide further evidence for the role of Ets family members and related Id proteins in telomerase regulation and characterize the underlying molecular mechanisms.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2002
Drm/Gremlin, a member of the Dan family of BMP antagonists, is known to function in early embryonic development, but is also expressed in a tissue-specific fashion in adults and is significantly downregulated in transformed cells. In this report, we demonstrate that overexpression of Drm in the tumor-derived cell lines Daoy (primitive neuroectodermal) and Saos-2 (osteoblastic), either under ecdysone-inducible or constitutive promoters, significantly inhibits tumorigenesis. Furthermore, Drm overexpression in these cells increases the level of p21(Cip1) protein and reduces the level of phosphorylated p42/44 MAP kinase.
View Article and Find Full Text PDF