Publications by authors named "Meron Y Tadesse"

Zwitterionic (ZI) polymers enable the formation of noncovalent cross-links within ionic liquid electrolytes (ILEs) to create nonflammable, mechanically robust, and highly conductive ionogel electrolytes. In this study, ZI homopolymer poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)] scaffolds are synthesized in situ within lithium and/or sodium salt-based ILEs to construct a series of ionogels that contain between 3 and 15 wt % poly(MPC). Room-temperature ionic conductivity values of these ionogels are found to vary between approximately 1.

View Article and Find Full Text PDF

Recent experimental results have demonstrated that zwitterionic ionogel comprised of polyzwitterion (polyZI)-supported lithium salt-doped ionic liquid exhibits improved conductivities and lithium transference numbers than the salt-doped base ionic liquid electrolyte (ILE). However, the underlying mechanisms of such observations remain unresolved. In this work, we pursued a systematic investigation to understand the impact of the polyZI content and salt concentration on the structural and dynamic properties of the poly(MPC) ionogel of our model polyZI ionogel, poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)] supported LiTFSI/N-butyl-N-methylpyrrolidinium TFSI base ionic liquid electrolyte.

View Article and Find Full Text PDF