A full-scale high-rate cascade anaerobic digestion (CAD) system was evaluated for its ability to enhance enzymatic sludge hydrolysis. The system included a newly built digester, innovatively divided into three pie-shaped compartments (500 m each), followed by an existing, larger digester (1500 m). The system treated a mixture of waste activated sludge and primary sludge, achieving a stable total chemical oxygen demand reduction efficiency (56.
View Article and Find Full Text PDFThis study reports the effects of microaeration on a laboratory-scale AnMBR (MA-AnMBR) fed with synthetic concentrated domestic sewage. The imposed oxygen load mimics the oxygen load coming from a dissolved air flotation (DAF) unit, establishing an anaerobic digester-DAF (AD-DAF) combination with sludge recycling. Results showed a reduced COD concentration in the MA-AnMBR permeate compared with the AnMBR permeate, from 90 to 74 mgCOD L, and a concomitant 27% decrease in biogas production.
View Article and Find Full Text PDFThis study investigates the effects, conversions, and resistance induction, following the addition of 150 μg·L of two antibiotics, sulfamethoxazole (SMX) and trimethoprim (TMP), in a laboratory-scale micro-aerated anaerobic membrane bioreactor (MA-AnMBR). TMP and SMX were removed at 97 and 86%, indicating that micro-aeration did not hamper their removal. These antibiotics only affected the pH and biogas composition of the process, with a significant change in pH from 7.
View Article and Find Full Text PDFFull-scale thermal hydrolysis processes (THP) showed an increase in nutrients release and formation of melanoidins, which are considered to negatively impact methanogenesis during mesophilic anaerobic digestion (AD). In this research, fractionation of THP-sludge was performed to elucidate the distribution of nutrients and the formed melanoidins over the liquid and solid sludge matrix. Degradation of the different fractions in subsequent AD was assessed, and the results were compared with non-pre-treated waste activated sludge (WAS).
View Article and Find Full Text PDFIn aerobic granular sludge (AGS) reactors, granules of different sizes coexist in a single reactor. Their differences in settling behaviour cause stratification in the settled granule bed. In combination with substrate concentration gradients over the reactor height during the anaerobic plug-flow feeding regime, this can result in functional differences between granule sizes.
View Article and Find Full Text PDFAerobic granular sludge (AGS) is an advanced biofilm-based technology for wastewater treatment. Diffusion of substrates into the granules is a key aspect of this technology. Domestic wastewater contains soluble organic substrates of different sizes that could potentially diffuse into the granules.
View Article and Find Full Text PDFGranular sludge processes are frequently used in domestic and industrial wastewater treatment. The granule buoyant density and biomass density are important parameters for the design and operation of granular sludge reactors. Different methods to measure the granule density include the pycnometer method, the Percoll density gradient method, the dextran blue method, and the settling velocity method.
View Article and Find Full Text PDFThe highly variable characteristics of waste activated sludge (WAS) hinder the comparison of experimental results on WAS bioconversion between the different studies that use excess sludge from different origin. Sludge grown under laboratory conditions with synthetic wastewater as feed showed high resistance to commonly applied pre-treatment techniques, such as thermal pre-treatment. However, a distinctly higher bioconversion of this sludge was recorded compared to WAS from a full-scale wastewater treatment plant (WWTP).
View Article and Find Full Text PDFComplex substrates, like proteins, carbohydrates, and lipids, are major components of domestic wastewater, and yet their degradation in biofilm-based wastewater treatment technologies, such as aerobic granular sludge (AGS), is not well understood. Hydrolysis is considered the rate-limiting step in the bioconversion of complex substrates, and as such, it will impact the utilization of a large wastewater COD (chemical oxygen demand) fraction by the biofilms or granules. To study the hydrolysis of complex substrates within these types of biomass, this paper investigates the anaerobic activity of major hydrolytic enzymes in the different sludge fractions of a full-scale AGS reactor.
View Article and Find Full Text PDFHydrolysis is considered to be the rate-limiting step in anaerobic digestion of waste activated sludge (WAS). In this study, an innovative 4 stages cascade anaerobic digestion system was researched to (1) comprehensively clarify whether cascading configuration enhances WAS hydrolysis, and to (2) better understand the governing hydrolysis kinetics in this system. The cascade system consisted of three 2.
View Article and Find Full Text PDFThe presence of toxic compounds in wastewater can cause problems for organic matter and nutrient removal. In this study, the long-term effect of a model xenobiotic, 2-fluorophenol (2-FP), on ammonia-oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB) and phosphate accumulating organisms (PAO) in aerobic granular sludge was investigated. Phosphate (P) and ammonium (N) removal efficiencies were high (>93%) and, after bioaugmentation with 2-FP degrading strain FP1, 2-FP was completely degraded.
View Article and Find Full Text PDFBiofilm and granular sludge processes depend on diffusion of substrates. Despite their importance for the kinetic description of biofilm reactors, biofilm diffusion coefficients reported in literature vary greatly. The aim of this simulation study was to determine to what extent the methods that are used to measure diffusion coefficients contribute to the reported variability.
View Article and Find Full Text PDFAerobic granular sludge (AGS) technology is an alternative to conventional activated sludge to reduce the process footprint and energy consumption. Strategies for the efficient management of its produced biomass, that is grown in a granular morphology as well, need further development. Anaerobic digestion (AD) is commonly applied in waste activated sludge (WAS) treatment and is a potential option also for produced AGS treatment.
View Article and Find Full Text PDFFull-scale aerobic granular sludge technology under the trade name Nereda® has been implemented for municipal, as well as industrial wastewater treatment. Owing to the operational reactor procedures, two types of waste aerobic granular sludge can be clearly distinguished: 1) aerobic granular sludge selection discharge (AGS-SD) and 2) aerobic granular sludge mixture (AGS-RTC). This study systematically compared the anaerobic biodegradability of AGS-SD and AGS-RTC under mesophilic conditions.
View Article and Find Full Text PDFThis study aimed to characterise the gas-liquid flow and mixing behaviour in a gas-mixed anaerobic digester by improving phase interaction modelling using Computational Fluid Dynamics (CFD). A 2D axisymmetric model validated with experimental data was set up using an Eulerian-Eulerian method. Uncertainty factors, including bubble size, phase interaction forces and liquid rheology were found to significantly influence the flow field.
View Article and Find Full Text PDFBathers release bacteria in swimming pool water, but little is known about the fate of these bacteria and potential risks they might cause. Therefore, shower water was characterized and subjected to chlorination to identify the more chlorine-resistant bacteria that might survive in a chlorinated swimming pool and therefore could form a potential health risk. The total community before and after chlorination (1 mg Cl L for 30 s) was characterized.
View Article and Find Full Text PDFSludge predation by aquatic worms results in an increased sludge reduction rate, which is mainly due to the specific removal of a protein fraction from the sludge. As microorganisms play an essential role in sludge hydrolysis a better understanding of the microbial community involved in the worm predation process will provide more insight into the relations between the aquatic worms, their associated microbiome and the efficient sludge reduction. In this study, the microbial community associated with predation by the Tubifex tubifex was investigated.
View Article and Find Full Text PDFIn this work, we investigated the effects of flocculation aid (FA) addition to an anaerobic dynamic membrane bioreactor (AnDMBR) (7 L, 35 °C) treating waste-activated sludge (WAS). The experiment consisted of three distinct periods. In period 1 (day 1-86), the reactor was operated as a conventional anaerobic digester with a solids retention time (SRT) and hydraulic retention time (HRT) of 24 days.
View Article and Find Full Text PDFWorm predation (WP) by Tubifex tubifex was investigated using waste activated sludge (WAS) as the substrate. In order to better understand the sludge degradation mechanisms during WP, the activity of five common hydrolytic enzymes was determined and compared among the initial feed activated sludge, endogenous respirated sludge and worm predated sludge. The results showed that the enzymatic activity decreased upon aerobic (worm) treatment of WAS and that this activity was predominantly associated with the removed solids fraction of the sludge.
View Article and Find Full Text PDFWorm predation (WP) on activated sludge leads to increased sludge degradation rates, irrespective of the type of worm used or reactor conditions employed. However, the cause of the increased sludge degradation rates remains unknown. This paper presents a comparative analysis of the physical and biochemical aspects of predated sludge, providing insight into the hydrolytic mechanisms underlying WP.
View Article and Find Full Text PDFSewage fine sieved fraction (FSF) is a heterogeneous substrate consisting of mainly toilet paper fibers sequestered from municipal raw sewage by a fine screen. In earlier studies, a maximum biodegradation of 62% and 57% of the sewage FSF was found under thermophilic (55°C) and mesophilic (35°C) conditions, respectively. In order to research this limited biodegradability of sewage FSF, this study investigates the biodegradation of different types of cellulosic fibers-based hygiene papers including virgin fibers based toilet paper (VTP), recycled fiber based toilet paper (RTP), virgin pulp for paper production (VPPP) as a raw material, as well as microcrystalline cellulose (MCC) as a kind of fiberless reference material.
View Article and Find Full Text PDF