Publications by authors named "Merle Anders"

Previous reviews have quantified factors affecting greenhouse gas (GHG) emissions from Asian rice ( L.) systems, but not from rice systems typical for the United States, which often vary considerably particularly in practices (i.e.

View Article and Find Full Text PDF

Rice farmers are pressured to grow rice using less water. The impacts of water-saving rice cultivation methods on rice methylmercury concentrations are uncertain. Rice (Oryza sativa L.

View Article and Find Full Text PDF

An understanding of cultivar effects on field greenhouse gas (GHG) emissions in rice ( L.) systems is needed to improve the accuracy of predictive models used for estimating GHG emissions and to evaluate the GHG mitigation potential of different cultivars. We compared CH and NO emissions, global warming potential (GWP = NO + CH), yield-scaled GWP (GWP = GWP Mg grain), and plant growth characteristics of eight cultivars within four study sites in California and Arkansas.

View Article and Find Full Text PDF

Agriculture is faced with the challenge of providing healthy food for a growing population at minimal environmental cost. Rice (Oryza sativa), the staple crop for the largest number of people on earth, is grown under flooded soil conditions and uses more water and has higher greenhouse gas (GHG) emissions than most crops. The objective of this study was to test the hypothesis that alternate wetting and drying (AWD--flooding the soil and then allowing to dry down before being reflooded) water management practices will maintain grain yields and concurrently reduce water use, greenhouse gas emissions and arsenic (As) levels in rice.

View Article and Find Full Text PDF

Drill seeded rice ( L.) is the dominant rice cultivation practice in the United States. Although drill seeded systems can lead to significant CH and NO emissions due to anaerobic and aerobic soil conditions, the relationship between high-yielding management practices, particularly fertilizer N management, and total global warming potential (GWP) remains unclear.

View Article and Find Full Text PDF

Background: Rice growers are interested in new technologies that can reduce input costs while maintaining high field yields and grain quality. The bed-and-furrow (BF) water management system benefits farmers through decreased water usage, labor, and fuel as compared to standard flood management. Fertilizer inputs can be reduced by producing rice in rotation with soybeans, a nitrogen-fixing crop, and with the use of slow-release fertilizers that reduce nitrogen volatilization and run-off.

View Article and Find Full Text PDF

False smut (Ustilaginoidea virens) and kernel smut (Neovossia horrida) are diseases of rice (Oryza sativa) that reduce both grain yield and quality. Susceptible rice cultivars are in widespread use on production acreage in the United States, and the effects from crop management practices on smut control are poorly understood. We studied the long-term effects of crop rotation, soil tillage, and fertility level on rice smut severity.

View Article and Find Full Text PDF

False smut (Ustilaginoidea virens) is an important emerging disease of rice (Oryza sativa) in the southern United States, where all major rice cultivars and hybrids are susceptible to the disease. False smut susceptibility was evaluated in traditional paddy-rice fields and under furrow-irrigated conditions to determine the effects of alternative agricultural practices on the severity of this disease. Highly effective false smut suppression was observed in furrow-irrigated rice, where the disease was nearly eliminated in susceptible rice entries.

View Article and Find Full Text PDF

False smut (Ustilaginoidea virens) and kernel smut (Neovossia horrida) are diseases of rice (Oryza sativa) that reduce both grain yield and quality. False smut is an emerging disease worldwide that is rapidly gaining in importance, whereas kernel smut has historically been a chronic minor disease with sporadic outbreaks that cause considerable losses. Highly effective disease control was obtained for susceptible cultivars by employing conservation tillage (69% reduction in false smut), continuous rice cropping (88% reduction in false smut), and moderate nitrogen fertility rates (34 and 60% reductions in false smut and kernel smut, respectively).

View Article and Find Full Text PDF