Publications by authors named "Merkler K"

Peptidyl alpha-hydroxylating monooxygenase (PHM) functions in vivo towards the biosynthesis of alpha-amidated peptide hormones in mammals and insects. PHM is a potential target for the development of inhibitors as drugs for the treatment of human disease and as insecticides for the management of insect pests. We show here that relatively simple ground state analogs of the PHM substrate hippuric acid (C(6)H(5)-CO-NH-CH(2)-COOH) inhibit the enzyme with K(i) values as low as 0.

View Article and Find Full Text PDF

Scavenger receptor class B type I (SR-BI) is a major receptor of the high-density lipoprotein that mediates cholesterol efflux and reverse cholesterol transport. Alternative splicing of the scavenger receptor class B (SR-B) gene is observed and different splice forms, SR-BI and scavenger receptor class B type II (SR-BII), have been shown to function and localize in distinct ways. We have previously shown that SR-B alternative splicing regulation is associated with splicing factor ASF/SF2.

View Article and Find Full Text PDF

Prostaglandin F2alpha (PGF2alpha) plays a pivotal role in ovarian luteolysis by inhibiting the expression of steroidogenic acute regulatory (StAR) protein, leading to a decrease in intracellular cholesterol transport and luteal steroid production. Previously we have demonstrated that the transcription factor Yin Yang 1 (YY1) bound to three regions in the StAR promoter in vitro and repressed promoter activity. This study further defined the YY1-mediated PGF2alpha effect on the inhibition of StAR protein expression through YY1 interaction with a single region in the StAR promoter in vivo.

View Article and Find Full Text PDF

The scavenger receptor class B isoforms (SR-B) type I and type II mediate the selective uptake of high-density lipoprotein cholesterol and promote reverse cholesterol transport, an important atherosclerosis protection mechanism, in the liver. Previously it was shown that the hepatic expression of SR-BI and SR-BII is regulated by estrogen. In the present study, we demonstrate that estrogen differentially regulates expression of the glycosylated and nonglycosylated forms of SR-BI and SR-BII in rat liver and hepatic cells.

View Article and Find Full Text PDF

Purpose: Interleukin-12 (IL-12) has potential as an immunotherapeutic agent for the treatment of cancer but is unfortunately associated with toxicity. Delivery of a plasmid encoding IL-12 with electroporation induces an antitumor effect in the B16 mouse melanoma model without serious side effects. To translate this observation to the clinic, an evaluation of toxicity was done in the mouse model.

View Article and Find Full Text PDF

Oleamide is an endogenous sleep-inducing lipid that has been isolated from the cerebrospinal fluid of sleep-deprived mammals. Oleamide is the best-understood member of the primary fatty acid amide family. One key unanswered question regarding oleamide and all other primary acid amides is the pathway by which these molecules are produced.

View Article and Find Full Text PDF
Article Synopsis
  • - The C-terminal alpha-amide group in peptide hormones is formed through a reaction involving a precursor and the enzyme peptidylglycine alpha-amidating monooxygenase (PAM), which cleaves a glycine extension.
  • - Glutathione and its S-alkylated forms can act as substrates for PAM, leading to the production of amidated peptides while consuming oxygen and producing glyoxylate in a two-step reaction.
  • - Amidated glutathione is not a very effective substrate for glutathione S-transferase, but S-alkylated glutathiones with specific amino acids at the penultimate position, like S-decylglutathione, show improved reactivity in the
View Article and Find Full Text PDF

Bifunctional peptidylglycine alpha-amidating monooxygenase (PAM) catalyzes the copper-, ascorbate-, and O2-dependent cleavage of C-terminal glycine-extended peptides, N-acylglycines, and the bile acid glycine conjugates to the corresponding amides and glyoxylate. Two known metabolites of aspirin, salicyluric acid and gentisuric acid, are also substrates for PAM, leading to the formation of salicylamide and gentisamide. The time course for O2 consumption and glyoxylate production indicates that salicylurate amidation is a two-step reaction.

View Article and Find Full Text PDF

Bifunctional peptidylglycine alpha-amidating monooxygenase (PAM) catalyzes the copper-, ascorbate-, and O(2)-dependent cleavage of C-terminal glycine-extended peptides and N-acylglycines to the corresponding amides and glyoxylate. The alpha-amidated peptides and the long-chain acylamides are hormones in humans and other mammals. Bile acid glycine conjugates are also substrates for PAM leading to the formation of bile acid amides.

View Article and Find Full Text PDF

The fatty-acid primary amide, oleamide, is a novel signaling molecule whose mechanism of biosynthesis is unknown. Recently, the N(18)TG(2) cell line was shown to synthesize oleamide from oleic acid, thereby demonstrating that these cells contain the necessary catalytic activities for generating the fatty-acid primary amide. The ability of peptide alpha-amidating enzyme, peptidylglycine-alpha-amidating monooxygenase (PAM; EC 1.

View Article and Find Full Text PDF

Female CD-1 mice were treated topically with a low (25-50 nmol) or high (800 nmol) dose of benzo[a]pyrene (BP) or acetone vehicle, followed by 5 nmol 12-O-tetradecanoylphorbol 13-acetate (TPA) twice a week for 26 weeks. Selective UV radiation fractionation followed by PCR methods were used to analyze histologically defined subsets of cells (approximately 100-200 cells) on formalin-fixed, paraffin-embedded and H&E stained microscope sections. DNA samples from normal-appearing, hyperplastic or tumor regions from the skin of animals from each treatment group were isolated and amplified by PCR with c-Ha-ras-specific primers.

View Article and Find Full Text PDF

Bifunctional peptidylglycine alpha-amidating enzyme (alpha-AE) catalyzes the O2-dependent conversion of C-terminal glycine-extended prohormones to the active, C-terminal alpha-amidated peptide and glyoxylate. We show that alpha-AE will also catalyze the oxidative cleavage of N-acylglycines, from N-formylglycine to N-arachidonoylglycine. N-Formylglycine is the smallest amide substrate yet reported for alpha-AE.

View Article and Find Full Text PDF

The hypothesis that the decrease in the proportion of mutations at AT base pairs in Chinese hamster V-79 cells treated with increasing doses of (+)-(R,S,S,R)-benzo[a]pyrene diol epoxide ((+)-BPDE) is due to saturation of A for adduct formation was investigated by comparing the ratio of dA to dG adducts formed at high (0.48 microM) and low (0.04 microM) doses of [3H]-labeled (+)-BPDE.

View Article and Find Full Text PDF

Chinese hamster V-79 cells were treated with high cytotoxic or low noncytotoxic concentrations of the highly carcinogenic and mutagenic (-)-(1R,2S,3S,4R)-3,4-dihydroxy-1, 2-epoxy-1,2,3,4-tetrahydrobenzo[c]phenanthrene [(-)-B[c]PhDE; fjord-region diol epoxide] or its biologically less active (+)-(1S,2R,3R,4S) enantiomer [(+)-B[c]PhDE]. The benzylic 4-hydroxyl group and the epoxide oxygen are trans in both enantiomers. Independent 8-azaguanine-resistant clones were isolated.

View Article and Find Full Text PDF

Fatty acid primary amides have recently been recognized as mammalian hormones [Cravatt et al. (1995) Science 268, 1506-1509]. The route to their biosynthesis is unknown.

View Article and Find Full Text PDF

Earlier studies from our laboratories characterized the mutation profile of the optically active (+)-7R,8S-dihydroxy-9S,10R-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(+)-BPDE--the ultimate carcinogenic metabolite of benzo[a]pyrene] in the coding region of the hypoxanthine (guanine) phosphoribosyltransferase (HPRT) gene of Chinese hamster V-79 cells. In the present study, we evaluated the mutation profile of (-)-7S,8R-dihydroxy-9R, 10S-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(-)-BPDE-a weakly carcinogenic or inactive enantiomer] and compared its mutation profile with that of (+)-BPDE. In both diol epoxide enantiomers, the benzylic 7-hydroxy group and epoxide oxygen are trans.

View Article and Find Full Text PDF