Abnormalities at any stage of trophoblast development may result in pregnancy-related complications. Many of these adverse outcomes are discovered later in pregnancy, but the underlying pathomechanisms are constituted during the first trimester. Acquiring developmentally relevant material to elucidate the disease mechanisms is difficult.
View Article and Find Full Text PDFIn addition to antioxidative and anti-inflammatory properties, activators of the cytoprotective nuclear factor erythroid-2-like-2 (NRF2) signaling pathway have antiviral effects, but the underlying antiviral mechanisms are incompletely understood. We evaluated the ability of the NRF2 activators 4-octyl itaconate (4OI), bardoxolone methyl (BARD), sulforaphane (SFN), and the inhibitor of exportin-1 (XPO1)-mediated nuclear export selinexor (SEL) to interfere with influenza virus A/Puerto Rico/8/1934 (H1N1) infection of human cells. All compounds reduced viral titers in supernatants from A549 cells and vascular endothelial cells in the order of efficacy SEL>4OI>BARD = SFN, which correlated with their ability to prevent nucleo-cytoplasmic export of viral nucleoprotein and the host cell protein p53.
View Article and Find Full Text PDFThe nuclear factor erythroid 2-related factor 2 (NFE2L2, known as NRF2) regulates the expression of antioxidative and anti-inflammatory proteins. In order to investigate its impact during viral infections and testing of antiviral compounds, we applied CRISPR/Cas9 editing to eliminate NRF2 in the human iPS cell line MHHi001-A and generated two NRF2 knockout iPSC clones MHHi001-A-6 and MHHi001-A-7. After differentiation into epithelia or endothelial cells, these cells are useful tools to examine the antiviral effects of activators of the NRF2 signaling pathway.
View Article and Find Full Text PDFThe Transmembrane member 16A (TMEM16A), also known as anoctamin-1 (ANO1), is a calcium-activated chloride channel present in the airway epithelium. It is known to be involved in the apical chloride secretion indicating that TMEM16A could be addressed for the treatment of chloride secretion defects like in Cystic- Fibrosis (CF). In this paper we generated knockout cell lines using CRISPR/Cas9-mediated ablation in a healthy human iPSC line (MHHi001-A), in a CF patient iPSC line (MHHi002-A) and in its corrected counterpart (MHHi002-A-1).
View Article and Find Full Text PDFBackground: Congenital ISG15 deficiency is a rare autoinflammatory disorder that is driven by chronically elevated systemic interferon levels and predominantly affects central nervous system and skin.
Methods And Results: We have developed induced pluripotent stem cell-derived macrophages and endothelial cells as a model to study the cellular phenotype of ISG15 deficiency and identify novel treatments. ISG15 macrophages exhibited the expected hyperinflammatory responses, but normal phagocytic function.
This study aims to evaluate the application of ceramic ultrafiltration membranes in the crossflow mode for the separation of particles and oil in water emulsions (free oil droplets and micelles) from hydrothermal-liquefaction wastewater (HTL-WW) from the hydrothermal liquefaction of municipal sewage sludge. The experiments were carried out using one-channel TiO membranes with pore sizes of 30, 10 and 5 nm. The results showed that the highest stable permeability could be achieved with a membrane-pore size of 10 nm, which experienced less fouling, especially through pore blockage, in comparison to the two other pore sizes.
View Article and Find Full Text PDFCalcium plays a key role in cardiomyocytes (CMs) for the translation of the electrical impulse of an action potential into contraction forces. A rapid, not-invasive fluorescence imaging technology allows for the monitoring of calcium transients in human induced pluripotent stem cell derived-cardiomyocytes (hiPSC-CMs) to investigate the cardiac electrophysiology in vitro and after cell transplantation in vivo. The genetically encoded calcium indicators (GECIs) GCaMP6f or RCaMP1h were successfully transfected in the previously established hiPSC line MHHi001-A, together with a cardiac specific antibiotic selection cassette facilitating the monitoring of the calcium handling in highly pure populations of hiPSC-CMs.
View Article and Find Full Text PDFUlcerating skin lesions are manifestations of human ISG15 deficiency, a type I interferonopathy. However, chronic inflammation may not be their exclusive cause. We describe two siblings with recurrent skin ulcers that healed with scar formation upon corticosteroid treatment.
View Article and Find Full Text PDFLoss-of-function mutations in the bone morphogenetic protein receptor 2 (BMPR2) gene are common in heritable or idiopathic pulmonary arterial hypertension (PAH), and can result in functional impairment of both endothelial and vascular smooth muscle cells. Here, we report 3 PAH patient-specific induced pluripotent stem cells (iPSC) lines from 3 unrelated patients harbouring different mutations in the BMPR2 gene: a heterozygous missense mutation in exon 12, a heterozygous frame shift deletion in exon 3, and a heterozygous missense mutation in exon 11. These cell lines will serve as a valuable resource to model PAH in vitro.
View Article and Find Full Text PDFCellular therapies based on induced pluripotent stem cells (iPSCs) come out of age and an increasing number of clinical trials applying iPSC-based transplants are ongoing or in preparation. Recent studies, however, demonstrated a high number of small-scale mutations in iPSCs. Although the mutational load in iPSCs seems to be largely derived from their parental cells, it is still unknown whether reprogramming may enrich for individual mutations that could lead to loss of functionality and tumor formation from iPSC derivatives.
View Article and Find Full Text PDFHypertrophic cardiomyopathy (HCM) is the most common form of genetic heart disease and is characterized by abnormal thickening of the left ventricular wall and interventricular septum. Here we describe the generation of two induced pluripotent stem cell (iPSC) clones from a HCM patient, heterozygous for the p.Arg723Gly (c.
View Article and Find Full Text PDFStem Cell Res
December 2020
Interferon stimulated gene 15 (ISG15) is one of the most highly upregulated proteins in response to viral infection and is involved in numerous pathways with multiple mechanisms of actions. ISG15 deficiency has been reported to induce type I interferonopathy owing to defective negative regulation of IFN-I signalling as well as enhanced antiviral protection. Here, we have generated ISG15 knockout clones from human iPSCs, which provide useful cell resources to study mechanisms of ISG15 deficiency and gain more insight into the biological function of ISG15.
View Article and Find Full Text PDFMost monogenic disorders have a primary clinical presentation. Inherited ISG15 deficiency, however, has manifested with two distinct presentations to date: susceptibility to mycobacterial disease and intracranial calcifications from hypomorphic interferon-II (IFN-II) production and excessive IFN-I response, respectively. Accordingly, these patients were managed for their infectious and neurologic complications.
View Article and Find Full Text PDFHematopoietic development is spatiotemporally tightly regulated by defined cell-intrinsic and extrinsic modifiers. The role of cytokines has been intensively studied in adult hematopoiesis; however, their role in embryonic hematopoietic specification remains largely unexplored. Here, we used induced pluripotent stem cell (iPSC) technology and established a 3-dimensional, organoid-like differentiation system (hemanoid) maintaining the structural cellular integrity to evaluate the effect of cytokines on embryonic hematopoietic development.
View Article and Find Full Text PDFCystic Fibrosis (CF) is a genetic disease caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene which encodes for a chloride ion channel regulating the balance of salt and water across secretory epithelia. Here we generated an iPSC line from a CF patient homozygous for the p.Asn1303Lys mutation, a Class II folding defect mutation.
View Article and Find Full Text PDFLoeys-Dietz syndrome (LDS) is a rare connective tissue disorder characterized by a genetic predisposition for thoracic aortic aneurysm and dissection. Despite heterozygous loss-of-function mutations in genes for ligand, receptor, or downstream mediators of the transforming growth factor β (TGFβ) pathway, LDS is associated with a signature of high TGFβ signaling. We generated induced pluripotent stem cell (iPSC) lines from three adult LDS-patients (two male, one female) of a family with a heterozygous point mutation in exon 4 of the TGFβ-receptor1 (TGFBR1) gene (p.
View Article and Find Full Text PDFChronic mucocutaneous candidiasis (CMC) is a disease that is characterized by susceptibility to chronic or recurrent infections with Candida spp. due to mutations affecting mainly the IL-17 signaling of T-Cells. The most common etiologies of CMC are gain-of-function (GOF) mutations in the STAT1 gene.
View Article and Find Full Text PDFTumor protein p63 (p63) encodes for a transcription factor of the p53 family and is a marker for respiratory basal cells. Based on a NKX2.1 knock-in reporter cell line from human induced pluripotent stem cells (hiPSCs) (MHHi06-A-2) we established a NKX2.
View Article and Find Full Text PDFCFTR encodes for a chloride ion channel expressed primarily in secretory epithelia in the airways, intestine, liver and other tissues. Mutations in the CFTR gene have been identified in people suffering from Cystic Fibrosis. Here, we established a CFTR knock-in reporter cell line from a human iPSC line (MHHi006-A) using TALEN technology.
View Article and Find Full Text PDFAiming at clinical translation, robust directed differentiation of human pluripotent stem cells (hPSCs), preferentially in chemically defined conditions, is a key requirement. Here, feasibility of suspension culture based hPSC-cardiomyocyte (hPSC-CM) production in low-cost, xeno-free media compatible with good manufacturing practice standards is shown. Applying stirred tank bioreactor systems at increasing dimensions, our advanced protocol enables routine production of about 1 million hPSC-CMs/mL, yielding ∼1.
View Article and Find Full Text PDFNK homeobox 1 (NKX2.1; also known as thyroid transcription factor 1, TTF-1) encodes for a transcription factor involved in the development of thyroid, lung and brain. Here, we established a NKX2.
View Article and Find Full Text PDFOrganotypic culture systems from disease-specific induced pluripotent stem cells (iPSCs) exhibit obvious advantages compared with immortalized cell lines and primary cell cultures, but implementation of iPSC-based high-throughput (HT) assays is still technically challenging. Here, we demonstrate the development and conduction of an organotypic HT Cl/I exchange assay using cystic fibrosis (CF) disease-specific iPSCs. The introduction of a halide-sensitive YFP variant enabled automated quantitative measurement of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) function in iPSC-derived intestinal epithelia.
View Article and Find Full Text PDF