Publications by authors named "Meritxell Lopez-Canet"

For a series of beta-homophenylalanine based inhibitors of dipeptidyl peptidase IV ADME properties were improved by the incorporation of amide replacements. These efforts led to a novel series of potent and selective inhibitors of DPP-4 that exhibit an attractive pharmacokinetic profile and show excellent efficacy in an animal model of diabetes.

View Article and Find Full Text PDF

A series of highly potent and selective inhibitors of DPP-4 was optimized for ADMET properties. The effort resulted in the discovery of inhibitor 1g, that exhibits excellent efficacy in an oral glucose tolerance test and an attractive pharmacokinetic profile.

View Article and Find Full Text PDF

Modifications of DPP-4 inhibitor 5, that was discovered by structure based design, are described and structure-activity relationships discussed. With analogue 7k one of the most potent non-covalent inhibitors of DPP-4 reported to date (IC(50)=0.38nM) was discovered.

View Article and Find Full Text PDF

The underlying frameworks of natural product classes with multiple biological activities can be regarded as biologically selected and prevalidated starting points in vast chemical structure space in the development of compound collections for chemical biology and medicinal chemistry research. For the synthesis of natural product-derived and -inspired compound collections, the development of enantioselective transformations in a format amenable to library synthesis, e.g.

View Article and Find Full Text PDF

The first total synthesis of aquatic peptide microcin SF608 is described. Coupling of L-Hpla with the dipeptide L-Phe-L-Choi followed by coupling with agmatine and a deprotection step gave microcin SF608. In addition, the levorotatory character of L-Hpla (5) was thoroughly established, and the conformational analysis of L-Choi containing peptides 1 and 8-10 was performed using NMR spectroscopy to examine the cis-trans isomer equilibrium of the L-Phe-L-Choi amide bond.

View Article and Find Full Text PDF