The division potential of individual stem cells and the molecular consequences of successive rounds of proliferation remain largely unknown. Here, we developed an inducible cell division counter (iCOUNT) that reports cell division events in human and mouse tissues in vitro and in vivo. Analyzing cell division histories of neural stem/progenitor cells (NSPCs) in the developing and adult brain, we show that iCOUNT can provide novel insights into stem cell behavior.
View Article and Find Full Text PDFNeural stem cells (NSCs) generate neurons throughout life in the mammalian hippocampus. However, the potential for long-term self-renewal of individual NSCs within the adult brain remains unclear. We used two-photon microscopy and followed NSCs that were genetically labeled through conditional recombination driven by the regulatory elements of the stem cell-expressed genes GLI family zinc finger 1 (Gli1) or achaete-scute homolog 1 (Ascl1).
View Article and Find Full Text PDFThis protocol presents a plate-based workflow to perform RNA sequencing analysis of single cells/nuclei using Smart-seq2. We describe (1) the dissociation procedures for cell/nucleus isolation from the mouse brain and human organoids, (2) the flow sorting of single cells/nuclei into 384-well plates, and (3) the preparation of libraries following miniaturization of the Smart-seq2 protocol using a liquid-handling robot. This pipeline allows for the reliable, high-throughput, and cost-effective preparation of mouse and human samples for full-length deep single-cell/nucleus RNA sequencing.
View Article and Find Full Text PDFAltered neural stem/progenitor cell (NSPC) activity and neurodevelopmental defects are linked to intellectual disability. However, it remains unclear whether altered metabolism, a key regulator of NSPC activity, disrupts human neurogenesis and potentially contributes to cognitive defects. We investigated links between lipid metabolism and cognitive function in mice and human embryonic stem cells (hESCs) expressing mutant fatty acid synthase (FASN; R1819W), a metabolic regulator of rodent NSPC activity recently identified in humans with intellectual disability.
View Article and Find Full Text PDF