The bacterial transporter EmrE is a homo-dimeric membrane protein that effluxes cationic polyaromatic substrates against the concentration gradient by coupling to proton transport. As the archetype of the small multidrug resistance family of transporters, EmrE structure and dynamics provide atomic insights into the mechanism of transport by this family of proteins. We recently determined high-resolution structures of EmrE in complex with a cationic substrate, tetra(4-fluorophenyl)phosphonium (F-TPP), using solid-state NMR spectroscopy and an S64V-EmrE mutant.
View Article and Find Full Text PDFEmrE, a small multidrug resistance transporter from Escherichia coli, confers broad-spectrum resistance to polyaromatic cations and quaternary ammonium compounds. Previous transport assays demonstrate that EmrE transports a +1 and a +2 substrate with the same stoichiometry of two protons:one cationic substrate. This suggests that EmrE substrate binding capacity is limited to neutralization of the two essential glutamates, E14 and E14 (one from each subunit in the antiparallel homodimer), in the primary binding site.
View Article and Find Full Text PDFSmall multidrug resistance (SMR) transporters contribute to antibiotic resistance through proton-coupled efflux of toxic compounds. Previous biophysical studies of the E. coli SMR transporter EmrE suggest that it should also be able to perform proton/toxin symport or uniport, leading to toxin susceptibility rather than resistance in vivo.
View Article and Find Full Text PDFPPM1D encodes a serine/threonine phosphatase that regulates numerous pathways including the DNA damage response and p53. Activating mutations and amplification of PPM1D are found across numerous cancer types. GSK2830371 is a potent and selective allosteric inhibitor of PPM1D, but its mechanism of binding and inhibition of catalytic activity are unknown.
View Article and Find Full Text PDFPRMT5 and its substrate adaptor proteins (SAPs), pICln and Riok1, are synthetic lethal dependencies in MTAP-deleted cancer cells. SAPs share a conserved PRMT5 binding motif (PBM) which mediates binding to a surface of PRMT5 distal to the catalytic site. This interaction is required for methylation of several PRMT5 substrates, including histone and spliceosome complexes.
View Article and Find Full Text PDF