Spectrochim Acta A Mol Biomol Spectrosc
March 2025
Dispersions of charged maghemite nanoparticles (NPs) in EAN (ethylammonium nitrate) a reference Ionic Liquid (IL) are studied here using a number of static and dynamical experimental techniques; small angle scattering (SAS) of X-rays and of neutrons, dynamical light scattering and forced Rayleigh scattering. Particular insight is provided regarding the importance of tuning the ionic species present at the NP/IL interface. In this work we compare the effect of Li, Na or Rb ions.
View Article and Find Full Text PDFIn all biologically relevant media, proteins interact in the presence of surrounding ions, and such interactions are water-mediated. Water molecules play a crucial role in the restructuring of proteins in solution and indeed in their biological activity. Surface water dynamics and proton exchange at protein surfaces is investigated here using NMR relaxometry, for two well-known globular proteins, lysozyme and bovine serum albumin, with particular attention to the role of surface ions.
View Article and Find Full Text PDFThe objective of the method is to allow agitation and fast homogenization of liquid systems in NMR tubes, directly inside the NMR spectrometer. The setup makes it possible to record spectra of samples that are macroscopically not stable, as dispersions of large particles. It makes also possible to fasten the homogeneization of liquid during a reaction or a phase transition.
View Article and Find Full Text PDFMagnetite and maghemite multicore nanoflowers (NFs) synthesized using the modified polyol-mediated routes are to date among the most effective nanoheaters in magnetic hyperthermia (MHT). Recently, magnetite NFs have also shown high photothermal (PT) performances in the most desired second near-infrared (NIR-II) biological window, making them attractive in the field of nanoparticle-activated thermal therapies. However, what makes magnetic NFs efficient heating agents in both modalities still remains an open question.
View Article and Find Full Text PDFEgg-tempera painting is a pictorial technique widely used in the Middle Ages, although poorly studied in its physico-chemical aspects until now. Here we show how NMR relaxometry and rheology can be combined to probe egg-tempera paints and shed new light on their structure and behavior. Based on recipes of the 15th century, model formulations with egg yolk and green earth have been reproduced to characterize the physicochemical properties of this paint at the mesoscopic and macroscopic scales.
View Article and Find Full Text PDFHypothesis: Some of the most promising fields of application of ionic liquid-based colloids imply elevated temperatures. Their careful design and analysis is therefore essential. We assume that tuning the structure of the nanoparticle-ionic liquid interface through its composition can ensure colloidal stability for a wide temperature range, from room temperature up to 200 °C.
View Article and Find Full Text PDFProteins function in crowded aqueous environments, interacting with a diverse range of compounds, and among them, dissolved ions. These interactions are water-mediated. In the present study, we combine field-dependent NMR relaxation (NMRD) and theory to probe water dynamics on the surface of proteins in concentrated aqueous solutions of hen egg-white lysozyme (LZM) and bovine serum albumin (BSA).
View Article and Find Full Text PDFFerrofluids based on maghemite nanoparticles (NPs), typically 10 nm in diameter, are dispersed in an ionic liquid (1-ethyl 3-methylimidazolium bistriflimide - EMIM-TFSI). The average interparticle interaction is found to be repulsive by small angle scattering of X-rays and of neutrons, with a second virial coefficient A2 = 7.3.
View Article and Find Full Text PDFThe data presented here are related to the research paper entitled "Green Earth pigments dispersions: water dynamics at the interfaces". The nuclear magnetic resonance (NMR) relaxometry data are provided for various aqueous Green Earth (GE) pigments dispersions with volume fraction spanning approximately from 0.1 to 0.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2021
Hypothesis: The objective is to elucidate the multiscale dynamics of water within natural mixtures of minerals, green earth pigments that are mainly composed of phyllosilicates containing large amount of iron. In particular, the interaction of water with the different kinds of surfaces has to be probed. One issue is to examine the influence of surface type, basal or edge, on the dispersion quality.
View Article and Find Full Text PDFPoly(thiophen-3-ylacetic acid) (PTAA) is a representative of conjugated polyelectrolytes which are used in many optoelectronics devices. The performance of these devices is affected by the polymer conformation, which, among others, depends on the nature of the counterion. In this study, the binding of tetrabutylammonium counterions (TBA) on PTAA was determined using a combination of nuclear Overhauser effect spectroscopy (NOESY) and molecular dynamics (MD) simulation.
View Article and Find Full Text PDFThe structure of polyelectrolytes is highly sensitive to small changes in interactions between their monomers. In particular, interactions mediated by counterions play a significant role and are affected by both specific molecular effects and generic concentration effects. The ability of coarse-grained models to reproduce the structural properties of an atomic model is thus a challenging task.
View Article and Find Full Text PDFThermodiffusion properties at room temperature of colloidal dispersions of hydroxyl-coated nanoparticles (NPs) are probed in water, in dimethyl sulfoxide (DMSO) and in mixtures of water and DMSO at various proportions of water, [Formula: see text]. In these polar solvents, the positive NPs superficial charge imparts the systems with a strong electrostatic interparticle repulsion, slightly decreasing from water to DMSO, which is here probed by Small Angle Neutron Scattering and Dynamic Light Scattering. However if submitted to a gradient of temperature, the NPs dispersed in water with ClO counterions present a thermophilic behavior, the same NPs dispersed in DMSO with the same counterions present a thermophobic behavior.
View Article and Find Full Text PDFUnder a temperature gradient, the direction of thermodiffusion of charged γ-Fe2O3 nanoparticles (NPs) depends on the nature of the counter-ions present in the dispersion, resulting in either a positive or negative Soret coefficient. Various counter-ions are probed in finely tuned and well characterized dispersions of citrate-coated NPs at comparable concentrations of free ionic species. The Soret coefficient ST is measured in stationary conditions together with the mass-diffusion coefficient Dm using a forced Rayleigh scattering method.
View Article and Find Full Text PDFIon-specific effects at the protein surface are investigated here in light of the changes they infer to surface water dynamics, as observed by 1H NMR relaxation (at 20 MHz). Two well-known proteins, hen egg-white lysozyme (LZM) and bovine serum albumin (BSA), show qualitatively opposite trends in the transverse relaxation rate, R2(1H), along a series of different monovalent salt anions in the solution. Presence of salt ions increases R2(1H) in the case of lysozyme and diminishes it in the case of BSA.
View Article and Find Full Text PDFThermodiffusion of different ferrite nanoparticles (NPs), ∼10 nm in diameter, is explored in tailor-made aqueous dispersions stabilized by electrostatic interparticle interactions. In the dispersions, electrosteric repulsion is the dominant force, which is tuned by an osmotic-stress technique, i.e.
View Article and Find Full Text PDFAn analytical model describing the thermoelectric potential production in magnetic nanofluids (dispersions of magnetic and charged colloidal particles in liquid media) is presented. The two major entropy sources, the thermogalvanic and thermodiffusion processes are considered. The thermodiffusion term is described in terms of three physical parameters; the diffusion coefficient, the Eastman entropy of transfer and the electrophoretic charge number of colloidal particles, which all depend on the particle concentration and the applied magnetic field strength and direction.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2017
Montmorillonite (Mt) clays have a high specific surface area and surface charge, which confer them remarkable adsorption properties. Nevertheless, their electrochemical and aggregation behavior are not completely elucidated because of the complexity of their microstructural and interfacial properties. In this work, the conductive and dispersive properties of Na-Mt suspensions of weight fractions 0.
View Article and Find Full Text PDFThe addition of simple salt to a solution of conjugated polyelectrolyte can lead to substantial changes in its optical properties caused by the conformational change of the polymer chain. The effect of the addition of alkali metal and tetraalkylammonium chlorides to solutions of lithium salt of poly(thiophen-3-ylacetic acid) is investigated by NMR. The fractions of free alkali metal counterions are in agreement with predictions of the cylindrical Poisson-Boltzmann cell model.
View Article and Find Full Text PDFThe Seebeck and Soret coefficients of ionically stabilized suspension of maghemite nanoparticles in dimethyl sulfoxide are experimentally studied as a function of nanoparticle volume fraction. In the presence of a temperature gradient, the charged colloidal nanoparticles experience both thermal drift due to their interactions with the solvent and electric forces proportional to the internal thermoelectric field. The resulting thermodiffusion of nanoparticles is observed through forced Rayleigh scattering measurements, while the thermoelectric field is accessed through voltage measurements in a thermocell.
View Article and Find Full Text PDFThe electric signal induced by an ultrasonic wave in aqueous solutions of charged species is measured and analyzed. A device is developed which measures the raw induced electric signal for small sample volumes (few milliliters) and without any preceding calibration. The potential difference generated between two identical electrodes, called the ionic vibration potential (IVP), is thus easily deduced.
View Article and Find Full Text PDFThe results of diffusion and electrophoretic NMR (eNMR) measurements are reported for a series of tetramethylammonium (TMA) electrolytes (with sulphate, fluoride, acetate, chloride, bromide, nitrate, iodide and perchlorate as anions) in deuterated solvents such as water, dimethylsulphoxide (DMSO), acetonitrile, methanol and ethanol. In addition, similar data are presented for aqueous solutions of tetraalkylammonium salts with increasing alkyl chain length. The combination of diffusion NMR and eNMR yields the effective charge for the TMA cation.
View Article and Find Full Text PDFMolecular simulations have allowed us to probe the atomic details of aqueous solutions of tetramethylammonium (TMA) and tetrabutylammonium (TBA) bromide, across a wide range of concentrations (0.5 to 3-4 molal). We highlight the space-filling (TMA(+)) versus penetrable (TBA(+)) nature of these polyatomic cations and its consequence for ion hydration, ion dynamics and ion-ion interactions.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2013
The dynamics of particles in solution or suspension is influenced by thermal fluctuations and hydrodynamic interactions. Several mesoscale methods exist to account for these solvent-induced effects such as Brownian dynamics with hydrodynamic interactions and hybrid molecular dynamics-stochastic rotation dynamics methods. Here we compare two ways of coupling solutes to the solvent with stochastic rotation dynamics (SRD) to Brownian dynamics with and without explicit hydrodynamic interactions.
View Article and Find Full Text PDF