Publications by authors named "Meriem Miyassa Aci"

Pear brown rot and blossom blight caused by seriously affect pear production worldwide. Here, we compared the transcriptomic profiles of petals after inoculation with using two pear cultivars with different levels of sensitivity to disease (Sissy, a relatively tolerant cultivar, and Kristalli, a highly susceptible cultivar). Physiological indexes were also monitored in the petals of both cultivars at 2 h and 48 h after infection (2 HAI and 48 HAI).

View Article and Find Full Text PDF

Background: Understanding the complex regulatory network underlying plant nitrogen (N) responses associated with high Nitrogen Use Efficiency (NUE) is one of the main challenges for sustainable cropping systems. Nitrate (NO ), acting as both an N source and a signal molecule, provokes very fast transcriptome reprogramming, allowing plants to adapt to its availability. These changes are genotype- and tissue-specific; thus, the comparison between contrasting genotypes is crucial to uncovering high NUE mechanisms.

View Article and Find Full Text PDF

-Cinnamic acid is a phenolic compound widely studied in plant metabolism due to its importance in regulating different plant processes. Previous studies on maize plants showed that this compound could affect plant growth and causes metabolic changes in the leaves when applied. However, its effects on root metabolism are not well known.

View Article and Find Full Text PDF

Nitrogen (N) fertilization is one of the main inputs to increase crop yield and food production. However, crops utilize only 30-40% of N applied; the remainder is leached into the soil, causing environmental and health damage. In this scenario, the improvement of nitrogen-use efficiency (NUE) will be an essential strategy for sustainable agriculture.

View Article and Find Full Text PDF

Nitrogen-use efficiency (NUE) is a complex trait of great interest in breeding programs because through its improvement, high crop yields can be maintained whilst N supply is reduced. In this study, we report a transcriptomic analysis of four NUE-contrasting eggplant (Solanum melongena) genotypes following short- and long-term exposure to low N, to identify key genes related to NUE in the roots and shoots. The differentially expressed genes in the high-NUE genotypes are involved in the light-harvesting complex and receptor, a ferredoxin-NADP reductase, a catalase and WRKY33.

View Article and Find Full Text PDF