A critical property for tissue adhesives is a controllable degradation rate so that these adhesives do not act as barriers to wound healing. Typical degradation tests require large amount of samples, which can be tedious and expensive to perform. Additionally, current degradation tests are carried out under simulated physiological conditions and may not accurately reflect the complex environment that an adhesive would experience .
View Article and Find Full Text PDFDopamine mimics the exceptional moisture-resistant adhesive properties of the amino acid, DOPA, found in adhesive proteins secreted by marine mussels. The catechol side chain of dopamine was functionalized with a nitro-group, and the effect of the electron withdrawing group modification on the cross-linking chemistry and bioadhesive properties of the adhesive moiety was evaluated. Both nitrodopamine and dopamine were covalently attached as a terminal group onto an inert, 4-armed poly(ethylene glygol) (PEG-ND and PEG-D, respectively).
View Article and Find Full Text PDFThe remarkable underwater adhesion strategy employed by mussels has inspired bioadhesives that have demonstrated promise in connective tissue repair, wound closure, and local delivery of therapeutic cells and drugs. While the pH of oxygenated blood and internal tissues is typically around 7.4, skin and tumor tissues are significantly more acidic.
View Article and Find Full Text PDF