ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons and atrophy of distal axon terminals in muscle, resulting in loss of motor function. Motor end plates denervated by axonal retraction of dying motor neurons are partially reinnervated by remaining viable motor neurons; however, this axonal sprouting is insufficient to compensate for motor neuron loss. Activating transcription factor 3 (ATF3) promotes neuronal survival and axonal growth.
View Article and Find Full Text PDFDistinguishing the primary from secondary effects and compensatory mechanisms is of crucial importance in understanding adult-onset neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). Transgenic mice that overexpress the G93A mutation of the human Cu-Zn superoxide dismutase 1 gene (hSOD1(G93A) mice) are a commonly used animal model of ALS. Whole-cell patch-clamp recordings from neurons in acute slice preparations from neonatal wild-type and hSOD1(G93A) mice were made to characterize functional changes in neuronal activity.
View Article and Find Full Text PDFNR3B is a modulatory subunit of the NMDA receptor, abundantly expressed in both cranial and spinal somatic motoneurons and at lower levels in other regions of the brain as well. Recently, we found the human NR3B gene (GRIN3B) to be highly genetically heterogeneous, and that approximately 10% of the normal European-American population lacks NR3B due to homozygous occurrence of a null allele in the gene. Therefore, it is especially important to understand the phenotypic consequences of the genetic loss of NR3B in both humans and animal models.
View Article and Find Full Text PDFRecent Pat Cardiovasc Drug Discov
January 2006
The discovery of endothelin two decades ago has now evolved into an intricate vascular endothelin (ET) system. Several ET isoforms, receptors, signaling pathways, agonists, antagonists, and clinical applications have been identified and documented in first-rate patents. The role of ET as one of the most potent endothelium-derived vasoconstricting factors is now complemented by a newly discovered role in vascular relaxation.
View Article and Find Full Text PDF