Publications by authors named "Mergey M"

Key parasite transmission parameters are difficult to obtain from elusive wild animals. For Echinococcus multilocularis, the causative agent of alveolar echinococcosis (AE), the red fox is responsible for most of the environmental contamination in Europe. The identification of individual spreaders of E.

View Article and Find Full Text PDF

Cholangiocarcinoma (CCA) is a desmoplastic tumor of the biliary tree in which epidermal growth factor receptor (EGFR) is overexpressed and contributes to cancer progression. Although EGFR has been envisaged as a target for therapy, treatment with tyrosine kinase inhibitors (TKI) such as erlotinib did not provide therapeutic benefit in patients with CCA, emphasizing the need to investigate resistance mechanisms against EGFR inhibition. Resistant CCA cells to EGFR inhibition were obtained upon long-time exposure of cells with erlotinib.

View Article and Find Full Text PDF

Aims: Ezrin connects proteins from the plasma membrane to the subcortical cytoskeleton, and contributes to epithelial integrity by interacting with the cell-cell adhesion molecule E-cadherin. In the liver, ezrin is restricted to cholangiocytes, where it regulates biliary secretory functions. During carcinogenesis, ezrin expression is impaired and associated with enhancement of cell migratory activity in cancer cells; therefore, we aimed to analyse ezrin in cholangiocarcinogenesis.

View Article and Find Full Text PDF

The development and progression of liver cancer are characterized by increased levels of reactive oxygen species (ROS). ROS-induced oxidative stress impairs cell proliferation and ultimately leads to cell death. Although liver cancer cells are especially resistant to oxidative stress, mechanisms of such resistance remain understudied.

View Article and Find Full Text PDF

Background & Aims: Epithelial-mesenchymal transition (EMT) is a cellular process involved in cancer progression. The first step of EMT consists in the disruption of E-cadherin-mediated adherens junctions. Cholangiocarcinoma (CCA), a cancer with a poor prognosis due to local invasion and metastasis, displays EMT features.

View Article and Find Full Text PDF

Unlabelled: Intrahepatic cholangiocarcinoma (CCA) is characterized by an abundant desmoplastic environment. Poor prognosis of CCA has been associated with the presence of alpha-smooth muscle actin (α-SMA)-positive myofibroblasts (MFs) in the stroma and with the sustained activation of the epidermal growth factor receptor (EGFR) in tumor cells. Among EGFR ligands, heparin-binding epidermal growth factor (HB-EGF) has emerged as a paracrine factor that contributes to intercellular communications between MFs and tumor cells in several cancers.

View Article and Find Full Text PDF
Article Synopsis
  • Ezrin and radixin are important proteins for maintaining the structure of liver cells, especially in cholestatic liver diseases where bile secretion is abnormal.
  • In this study, researchers looked at how these proteins are expressed in both fetal and adult human livers, particularly in conditions like biliary atresia and sclerosing cholangitis.
  • They found that ezrin is mainly present in biliary cells, while radixin is found in both biliary and liver cells, and its abnormal expression can indicate the progression of liver disease to cancer.
View Article and Find Full Text PDF

Scaffold proteins form multiprotein complexes that are central to the regulation of intracellular signaling. The scaffold protein ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) is highly expressed at the plasma membrane of normal biliary epithelial cells and binds epidermal growth factor receptor (EGFR), a tyrosine kinase receptor with oncogenic properties. This study investigated EBP50-EGFR interplay in biliary cancer.

View Article and Find Full Text PDF

Scaffold proteins are defined by the presence of specific protein-binding domains (e.g. PDZ domains) that assemble several proteins into functional complexes.

View Article and Find Full Text PDF

Backgrounds & Aims: Under normal conditions, the biliary tract is a microbial-free environment. The absence of microorganisms has been attributed to various defense mechanisms that include the physicochemical and signaling actions of bile salts. Here, we hypothesized that bile salts may stimulate the expression of a major antimicrobial peptide, cathelicidin, through nuclear receptors in the biliary epithelium.

View Article and Find Full Text PDF

Ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) anchors and regulates apical membrane proteins in epithelia. EBP50 is inducible by estrogen and may affect cell proliferation, although this latter function remains unclear. The goal of this study was to determine whether EBP50 was implicated in the ductular reaction that occurs in liver disease.

View Article and Find Full Text PDF

Cholestatic disorders may arise from liver ischemia (e.g., in liver transplantation) through various mechanisms.

View Article and Find Full Text PDF

The pathophysiologic mechanisms causing inflammation in cystic fibrosis (CF) remain obscure. The effects of proapoptotic agents on pancreatic and tracheal cell lines expressing wild-type CFTR (PANC-1 and NT-1, respectively) or the homozygous CFTRDeltaF508 mutation (CFPAC-1 and CFT-2, respectively) were assessed. An increased susceptibility to apoptosis was observed in CFPAC-1 and CFT-2 cells.

View Article and Find Full Text PDF

Despite evidence that mucin overproduction is critical in the pathogenesis of gallstones, the mechanisms triggering mucin production in gallstone disease are unknown. Here, we tested the potential implication of an inflammation-dependent epidermal growth factor receptor (EGF-R) pathway in the regulation of gallbladder mucin synthesis. In gallbladder tissue sections from subjects with cholesterol gallstones, mucus accumulation was associated with neutrophil infiltration and with increased expressions of EGF-R and of tumor necrosis factor-alpha (TNF-alpha).

View Article and Find Full Text PDF

Recent reports in patients with PFIC1 have indicated that a gene defect in ATP8B1 could cause deregulations in bile salt transporters through decreased expression and/or activity of FXR. This study aimed to: (1) define ATP8B1 expression in human hepatobiliary cell types, and (2) determine whether ATP8B1 defect affects gene expressions related to bile secretion in these cells. ATP8B1 expression was detected by RT-PCR in hepatocytes and cholangiocytes isolated from normal human liver and gallbladder.

View Article and Find Full Text PDF

Macrolides are accumulated in phagocytes, partially via an active transport system; the membrane carrier is not identified but many data indicate a link with the P-glycoprotein family which includes the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. We have used two epithelial cell lines which express either wild-type (N cells) or mutated (homozygous deltaF508) (F cells) CFTR to study the cellular accumulation of two macrolides (azithromycin and roxithromycin). Adherent cells were incubated with the radiolabeled drugs before extensive washings and counting.

View Article and Find Full Text PDF

Vasoactive intestinal peptide receptor-1 (VPAC1) is the high-affinity receptor of vasoactive intestinal peptide (VIP), a major regulator of bile secretion. To better define the level at which VPAC1 stimulates bile secretion, we examined its expression in the different cell types participating in bile formation (i.e.

View Article and Find Full Text PDF

Fluid and ion secretion in the gallbladder is mainly triggered by the intracellular second messenger cAMP. We examined the action of bile salts on the cAMP-dependent pathway in the gallbladder epithelium. Primary cultures of human gallbladder epithelial cells were exposed to agonists of the cAMP pathway and/or to bile salts.

View Article and Find Full Text PDF

Whether bile acids regulate biliary epithelial cell (BEC) secretory functions in human is poorly known. The purpose of the study was to determine if human gallbladder-derived BEC exhibit bile acid transport activity that affect their secretory functions and to evaluate the influence of bile acid hydrophobicity in this response by comparing the effects of tauroursodeoxycholate (TUDC) and of taurochenodeoxycholate (TCDC). Expression of the apical sodium-dependent bile acid transporter (ASBT) and of the organic anion transporting polypeptide (OATP-A) was detected and associated with sodium-dependent and sodium-independent [(3)H]taurocholate uptake in BEC.

View Article and Find Full Text PDF

Cystic fibrosis transmembrane conductance regulator (CFTR), the cystic fibrosis (CF) gene product, functions as an adenosine 3', 5'-cyclic monophosphate (cAMP)-regulated chloride channel in the apical membrane of biliary epithelial cells, including gallbladder epithelial cells. It has been shown that triangle upF508, the most common CF mutation, impedes CFTR trafficking to the apical surface of epithelial cells. To elucidate the mechanisms of CF biliary disease, we examined structural features, CFTR expression, and chloride transport properties in gallbladder epithelial cells from nine triangle upF508 homozygous liver transplant recipients.

View Article and Find Full Text PDF

The cellular tropism of hepatitis C virus (HCV) is an important but much debated issue. Permissivity to HCV of biliary cells has never been demonstrated. In this context, we used gallbladder epithelial cells (GBEC) as a model of the more proximal biliary epithelium.

View Article and Find Full Text PDF

Fluid and ion transport across biliary epithelium contributes to bile flow. Alterations of this function may explain hepatobiliary complications in cystic fibrosis (CF). We investigated electrogenic anion transport across intact non-CF and CF human gallbladder mucosa in Ussing-type chambers.

View Article and Find Full Text PDF

Ion and fluid transport across the biliary epithelium contributes to bile secretion. Since endothelin (ET)-1 affects ion transport activities and is released by human gallbladder- derived biliary epithelial cells in primary culture, we examined the expression of ET peptides and ET receptors and the influence of ET-1 on ion transport in this epithelium ex vivo. In freshly isolated gallbladder epithelial cells, preproET-1, -2, and -3 mRNAs were detected by reverse transcription PCR and ET-1 isopeptide was identified by chromatography.

View Article and Find Full Text PDF

Background & Aims: The cellular mechanisms that regulate biliary mucin secretion in humans are unknown. To address this question, human gallbladder epithelial cells were used in primary culture.

Methods: [1-(14)C]-glucosamine-labeled glycoproteins secreted in vitro were analyzed and quantified after exposing cells to activators and inhibitors of the main transduction pathways and to potential biologically active secretagogues.

View Article and Find Full Text PDF

We evaluated the role of the activated Ras and Src/PyMT (Polyoma Middle T) signaling pathways on the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) in human colonic Caco-2 cell lines. Control vector-transfected Caco-2 cell monolayer preparations (Caco-2-H) responded to forskolin with an increase in short circuit current (Isc) mediated by CFTR. Furthermore, Caco-2-H cells responded to ATP, a reported stimulator of intracellular Ca2+ (Cai2+), and a potential source of adenosine-mediated elevation of cAMP.

View Article and Find Full Text PDF