Effective population size () is one of the most important parameters in evolutionary biology, as it is linked to the long-term survival capability of species. Therefore, greatly interests conservation geneticists, but it is also very relevant to policymakers, managers, and conservation practitioners. Molecular methods to estimate rely on various assumptions, including no immigration, panmixia, random sampling, absence of spatial genetic structure, and/or mutation-drift equilibrium.
View Article and Find Full Text PDFIn population genetics idealized Wright-Fisher (WF) populations are generally considered equivalent to real populations with regard to the major evolutionary processes that influence genotype and allele frequencies. As a result we often model the response of populations by focusing on the effective size . The Diversity Partitioning Theorem (DPT) shows that you cannot model the behavior of a system solely on the basis of a diversity (accounting for unevenness among items) without taking richness into account.
View Article and Find Full Text PDFMany methods are now available to calculate , but their performance varies depending on assumptions. Although simulated data are useful to discover certain types of bias, real empirical data supported by detailed known population histories allow us to discern how well methods perform with actual messy and complex data. Here, we focus on two genomic data sets of grey wolf populations for which population size changes of the past 40-120 years are well documented.
View Article and Find Full Text PDFAccurately estimating effective population size ( ) is essential for understanding evolutionary processes and guiding conservation efforts. This study investigates estimation methods in spatially structured populations using a population of moor frog () as a case study. We assessed the behaviour of estimates derived from the linkage disequilibrium (LD) method as we changed the spatial configuration of samples.
View Article and Find Full Text PDFUnder the recently adopted Kunming-Montreal Global Biodiversity Framework, 196 Parties committed to reporting the status of genetic diversity for all species. To facilitate reporting, three genetic diversity indicators were developed, two of which focus on processes contributing to genetic diversity conservation: maintaining genetically distinct populations and ensuring populations are large enough to maintain genetic diversity. The major advantage of these indicators is that they can be estimated with or without DNA-based data.
View Article and Find Full Text PDFGenetic monitoring of populations currently attracts interest in the context of the Convention on Biological Diversity but needs long-term planning and investments. However, genetic diversity has been largely neglected in biodiversity monitoring, and when addressed, it is treated separately, detached from other conservation issues, such as habitat alteration due to climate change. We report an accounting of efforts to monitor population genetic diversity in Europe (genetic monitoring effort, GME), the evaluation of which can help guide future capacity building and collaboration towards areas most in need of expanded monitoring.
View Article and Find Full Text PDFThe scientific community is often asked to predict the future state of the environment and, to do so, the structure (biodiversity) and the functions (ecosystem functioning) of the investigated systems must be described and understood. In his "handful of feathers" metaphor, Charles Darwin explained the difference between simple and predictable systems, obeying definite laws, and complex (and unpredictable) systems, featured by innumerable components and interactions among them. In order not to waste efforts in impossible enterprises, it is crucial to ascertain if accurate predictions are possible in a given domain, and to what extent they might be reliable.
View Article and Find Full Text PDFBackground: Ecosystem restoration is as a critical tool to counteract the decline of biodiversity and recover vital ecosystem services. Restoration efforts, however, often fall short of meeting their goals. Although functionally important levels of biodiversity can significantly contribute to the outcome of ecosystem restoration, they are often overlooked.
View Article and Find Full Text PDFGlobal conservation policy and action have largely neglected protecting and monitoring genetic diversity-one of the three main pillars of biodiversity. Genetic diversity (diversity within species) underlies species' adaptation and survival, ecosystem resilience, and societal innovation. The low priority given to genetic diversity has largely been due to knowledge gaps in key areas, including the importance of genetic diversity and the trends in genetic diversity change; the perceived high expense and low availability and the scattered nature of genetic data; and complicated concepts and information that are inaccessible to policymakers.
View Article and Find Full Text PDFThe rapidly emerging field of macrogenetics focuses on analysing publicly accessible genetic datasets from thousands of species to explore large-scale patterns and predictors of intraspecific genetic variation. Facilitated by advances in evolutionary biology, technology, data infrastructure, statistics and open science, macrogenetics addresses core evolutionary hypotheses (such as disentangling environmental and life-history effects on genetic variation) with a global focus. Yet, there are important, often overlooked, limitations to this approach and best practices need to be considered and adopted if macrogenetics is to continue its exciting trajectory and reach its full potential in fields such as biodiversity monitoring and conservation.
View Article and Find Full Text PDFMillette et al. (Ecology Letters, 2020, 23:55-67) reported no consistent worldwide anthropogenic effects on animal genetic diversity using repurposed mitochondrial DNA sequences. We reexamine data from this study, describe genetic marker and scale limitations which might lead to misinterpretations with conservation implications, and provide advice to improve future macrogenetic studies.
View Article and Find Full Text PDFGenetic factors are often overlooked in conservation planning, despite their importance in small isolated populations. We used mitochondrial and microsatellite markers to investigate population genetics of the adder (Vipera berus) in southern Britain, where numbers are declining. We found no evidence for loss of heterozygosity in any of the populations studied.
View Article and Find Full Text PDFThe European weather loach (Misgurnus fossilis) is a cryptic and poorly known fish species of high conservation concern. The species is experiencing dramatic population collapses across its native range to the point of regional extinction. Although environmental DNA (eDNA)-based approaches offer clear advantages over conventional field methods for monitoring rare and endangered species, accurate detection and quantification remain difficult and quality assessment is often poorly incorporated.
View Article and Find Full Text PDFCapture-mark-recapture procedures are a basic tool in population studies and require that individual animals are correctly identified throughout their lifetime. A method that has become more and more popular uses photographic records of natural markings, such as pigmentation pattern and scalation configuration. As with any other marking tool, the validity of the photographic identification technique should be evaluated thoroughly.
View Article and Find Full Text PDFSpatial expansion, which is a crucial stage in the process to successful biological invasion, is anticipated to profoundly affect the magnitude and spatial distribution of genetic diversity in novel colonized areas. Here, we show that, contrasting common expectations, Pyrenean rocket (Sisymbrium austriacum), retained SNP diversity as this introduced plant species descended in the Meuse River Basin. Allele frequencies did not mirror between-population distances along the predominant expansion axis.
View Article and Find Full Text PDFBackground And Aims: Many invasive species severely threaten native biodiversity and ecosystem functioning. One of the most prominent questions in invasion genetics is how invasive populations can overcome genetic founder effects to establish stable populations after colonization of new habitats. High native genetic diversity and multiple introductions are expected to increase genetic diversity and adaptive potential in the invasive range.
View Article and Find Full Text PDFOne of the most prominent manifestations of the ongoing climate warming is the retreat of glaciers and ice sheets around the world. Retreating glaciers result in the formation of new ponds and lakes, which are available for colonization. The gradual appearance of these new habitat patches allows us to determine to what extent the composition of asexual Daphnia (water flea) populations is affected by environmental drivers vs.
View Article and Find Full Text PDFSpecies of the genus Daphnia O.F. Müller, 1785 (Cladocera: Daphniidae) have become very important models in evolutionary biology research.
View Article and Find Full Text PDFDue to climate change, Arctic ice sheets are retreating. This leads to the formation of numerous new periglacial ponds and lakes, which are being colonized by planktonic organisms such as the water flea Daphnia. This system provides unique opportunities to test genotype colonization dynamics and the genetic assemblage of populations.
View Article and Find Full Text PDFMany species are expanding their range polewards, and this has been associated with rapid phenotypic change. Yet, it is unclear to what extent this reflects rapid genetic adaptation or neutral processes associated with range expansion, or selection linked to the new thermal conditions encountered. To disentangle these alternatives, we studied the genomic signature of range expansion in the damselfly Coenagrion scitulum using 4950 newly developed genomic SNPs and linked this to the rapidly evolved phenotypic differences between core and (newly established) edge populations.
View Article and Find Full Text PDFBoth traits and the plasticity of these traits are subject to evolutionary change and therefore affect the long-term persistence of populations and their role in local communities. We subjected clones from 12 different populations of Alnus glutinosa, located along a latitudinal gradient, to two different temperature treatments, to disentangle the distribution of genetic variation in timing of bud burst and bud burst plasticity within and among genotypes, populations, and regions. We calculated heritability and evolvability estimates for bud burst and bud burst plasticity and assessed the influence of divergent selection relative to neutral drift.
View Article and Find Full Text PDFPonds throughout the world are subjected to a variety of management measures for purposes of biodiversity conservation. Current conservation efforts typically comprise a combination of multiple measures that directly and indirectly impact a wide range of organism groups. Knowledge of the relative impact of individual measures on different taxonomic groups is important for the development of effective conservation programs.
View Article and Find Full Text PDF