Publications by authors named "Meretta A Hanson"

Pyramidal cells (PCs) in CA1 hippocampus can be classified by their radial position as deep or superficial and organize into subtype-specific circuits necessary for differential information processing. Specifically, superficial PCs receive fewer inhibitory synapses from parvalbumin (PV)-expressing interneurons than deep PCs, resulting in weaker feedforward inhibition of input from CA3 Schaffer collaterals. Using mice, we investigated mechanisms underlying CA1 PC differentiation and the development of this inhibitory circuit motif.

View Article and Find Full Text PDF

Adult neural stem and progenitor cells (NSPCs) reside in the dentate gyrus (DG) of the hippocampus throughout the lifespan of most mammalian species. In addition to generating new neurons, NSPCs may alter their niche via secretion of growth factors and cytokines. We recently showed that adult DG NSPCs secrete vascular endothelial growth factor (VEGF), which is critical for maintaining adult neurogenesis.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) presents with diverse cognitive and behavioral abnormalities beginning during early development. Although the neural circuit mechanisms remain unclear, recent work suggests pathology in cortical inhibitory interneurons (INs) plays a crucial role. However, we lack fundamental information regarding changes in the physiology of synapses to and from INs in ASD.

View Article and Find Full Text PDF

is a high confidence risk gene for autism spectrum disorder that encodes a subunit of a chromatin remodeling complex expressed in neuronal progenitors. Haploinsufficiency causes a broad range of social, behavioral, and intellectual disability phenotypes, including Coffin-Siris syndrome. Recent work using transgenic mouse models suggests pathology is due to deficits in proliferation, survival, and synaptic development of cortical neurons.

View Article and Find Full Text PDF

Pyramidal cells (PCs) in CA1 hippocampus can be classified by their radial position as deep or superficial and organize into subtype-specific circuits necessary for differential information processing. Specifically, superficial PCs receive fewer inhibitory synapses from parvalbumin (PV)-expressing interneurons than deep PCs, resulting in weaker feedforward inhibition of input from CA3 Schaffer collaterals. Using mice, we investigated mechanisms underlying PC differentiation and the development of this inhibitory circuit motif.

View Article and Find Full Text PDF

Neurons in the neocortex and hippocampus are diverse and form synaptic connections that depend on their type. Recent work has improved our understanding of neuronal cell-types and how to target them for experiments. This is crucial for investigating cortical circuit architecture, as the current catalog of established cell-type specific circuit motifs is small relative to the diversity of neuronal subtypes.

View Article and Find Full Text PDF