Am J Physiol Cell Physiol
October 2021
The peroxisome proliferator-activated receptors (PPARs) are a group of transcription factors belonging to the nuclear receptor superfamily. Since most target genes of PPARs are implicated in lipid and glucose metabolism, regulation by PPARs could be used as a screening tool to identify novel genes involved in lipid or glucose metabolism. Here, we identify , a serine hydrolase enzyme that was reported to catalyze the hydrolysis of fatty acid esters of hydroxy fatty acids (FAHFAs), as a novel PPAR-regulated gene.
View Article and Find Full Text PDFTissues may respond differently to a particular stimulus if they have been previously exposed to that same stimulus. Here, we tested the hypothesis that a strong metabolic stimulus such as fasting may influence the hepatic response to a subsequent fast and thus elicit a memory effect. Overnight fasting in mice significantly increased plasma free fatty acids, glycerol, β-hydroxybutyrate, and liver triglycerides, and decreased plasma glucose, plasma triglycerides, and liver glycogen levels.
View Article and Find Full Text PDFLittle is known about gene regulation by fasting in human adipose tissue. Accordingly, the objective of this study was to investigate the effects of fasting on adipose tissue gene expression in humans. To that end, subcutaneous adipose tissue biopsies were collected from 11 volunteers 2 and 26 h after consumption of a standardized meal.
View Article and Find Full Text PDFObjective: Chronic cold exposure causes white adipose tissue (WAT) to adopt features of brown adipose tissue (BAT), a process known as browning. Previous studies have hinted at a possible role for the transcription factor Peroxisome Proliferator-Activated Receptor alpha (PPARα) in cold-induced browning. Here we aimed to investigate the importance of PPARα in driving transcriptional changes during cold-induced browning in mice.
View Article and Find Full Text PDF