Unlabelled: Solid tumors undergo metabolic reprogramming when growth outstrips local nutrient supply. Lipids such as cholesterol and fatty acids are required for continued tumor cell proliferation, and oncogenic mutations stimulate de novo lipogenesis to support tumor growth. Sterol regulatory element-binding protein (SREBP) transcription factors control lipid homeostasis by activating genes required for lipid synthesis and uptake.
View Article and Find Full Text PDFThe swallowability of solid oral dosage forms (SODFs) is crucial for medication safety and adherence. Both regulatory agencies and sponsors are concerned with bringing swallowable SODFs to patients. However, no best practices are available for assessing swallowability.
View Article and Find Full Text PDFUnlabelled: Metabolic reprogramming is a necessary component of oncogenesis and cancer progression that solid tumors undergo when their growth outstrips local nutrient supply. The supply of lipids such as cholesterol and fatty acids is required for continued tumor cell proliferation, and oncogenic mutations stimulate de novo lipogenesis to support tumor growth. Sterol regulatory element-binding protein (SREBP) transcription factors control cellular lipid homeostasis by activating genes required for lipid synthesis and uptake.
View Article and Find Full Text PDFProgesterone Receptor Membrane Component 1 (PGRMC1) is a heme-binding protein that has been implicated in a wide range of cell and tissue functions, including cytochromes P450 activity, heme homeostasis, cancer, female reproduction, and protein quality control. Despite an extensive body of literature, a relative lack of mechanistic insight means that how PGRMC1 functions in these different aspects of biology is largely unknown. This review provides an overview of the PGRMC1 literature, highlighting what information is rigorously supported by experimental evidence and where additional investigation is warranted.
View Article and Find Full Text PDFProgesterone receptor membrane component 1 (PGRMC1) is a heme-binding protein implicated in a wide range of cellular functions. We previously showed that PGRMC1 binds to cytochromes P450 in yeast and mammalian cells and supports their activity. Recently, the paralog PGRMC2 was shown to function as a heme chaperone.
View Article and Find Full Text PDF