Publications by authors named "Meredith N Braskie"

Background: Increased exposure to ambient air pollution, especially fine particulate matter () is associated with poorer brain health and increased risk for Alzheimer's disease (AD) and related dementias. The locus coeruleus (LC), located in the brainstem, is one of the earliest regions affected by tau pathology seen in AD. Its diffuse projections throughout the brain include afferents to olfactory areas that are hypothesized conduits of cerebral particle deposition.

View Article and Find Full Text PDF

Cerebral amyloid angiopathy (CAA) is characterized by amyloid-β aggregation in the media and adventitia of the leptomeningeal and cortical blood vessels. CAA is one of the strongest vascular contributors to Alzheimer's disease (AD). It frequently co-occurs in AD patients, but the relationship between CAA and AD is incompletely understood.

View Article and Find Full Text PDF

Background: Ambient air pollution exposures increase risk for Alzheimer's disease (AD) and related dementias, possibly due to structural changes in the medial temporal lobe (MTL). However, existing MRI studies examining exposure effects on the MTL were cross-sectional and focused on the hippocampus, yielding mixed results.

Method: To determine whether air pollution exposures were associated with MTL atrophy over time, we conducted a longitudinal study including 653 cognitively unimpaired community-dwelling older women from the Women's Health Initiative Memory Study with two MRI brain scans (MRI-1: 2005-6; MRI-2: 2009-10; M at MRI-1=77.

View Article and Find Full Text PDF

Exposure to ambient air pollution, especially particulate matter with aerodynamic diameter <2.5 μm (PM) and nitrogen dioxide (NO), are environmental risk factors for Alzheimer's disease and related dementia. The medial temporal lobe (MTL) is an important brain region subserving episodic memory that atrophies with age, during the Alzheimer's disease continuum, and is vulnerable to the effects of cerebrovascular disease.

View Article and Find Full Text PDF

In older adults with abnormal levels of Alzheimer's disease neuropathology, lower cerebrospinal fluid (CSF) vascular endothelial growth factor (VEGF) levels are associated with lower [¹⁸F]-fluorodeoxyglucose positron emission tomography (FDG-PET) signal, but whether this association is (1) specific to VEGF or broadly driven by vascular inflammation, or (2) modified by vascular risk (e.g., white matter hyperintensities [WMHs]) remains unknown.

View Article and Find Full Text PDF

Apolipoprotein ε allele 4 (APOE4) influences the metabolism of polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA). The entorhinal cortex (EC) in the brain is affected early in Alzheimer's disease and is rich in DHA. The purpose of this study is to identify the effect of APOE4 and DHA lipid species on the EC.

View Article and Find Full Text PDF

Background: Despite tremendous advancements in the field, our understanding of mild cognitive impairment (MCI) and Alzheimer's disease (AD) among Mexican Americans remains limited.

Objective: The aim of this study was to characterize MCI and dementia among Mexican Americans and non-Hispanic whites.

Methods: Baseline data were analyzed from n = 1,705 (n = 890 Mexican American; n = 815 non-Hispanic white) participants enrolled in the Health and Aging Brain Study-Health Disparities (HABS-HD).

View Article and Find Full Text PDF

Mitochondrial DNA variants have previously associated with disease, but the underlying mechanisms have been largely elusive. Here, we report that mitochondrial SNP rs2853499 associated with Alzheimer's disease (AD), neuroimaging, and transcriptomics. We mapped rs2853499 to a novel mitochondrial small open reading frame called SHMOOSE with microprotein encoding potential.

View Article and Find Full Text PDF

Introduction: Among vascular risk factors we hypothesized that an increased prevalence of diabetes in Hispanics would be associated with greater white matter hyperintensity (WMH) volume, which may contribute to cognitive decline.

Methods: A total of 1318 participants (60% female; 49% Hispanic, 51% non-Hispanic White; age 66.2 ± 8.

View Article and Find Full Text PDF

Background: The current project sought to evaluate the impact that white matter hyperintensities (WMH) have on executive function in cognitively normal Mexican Americans, an underserved population with onset and more rapid progression of dementia.

Methods: Data from 515 participants (360 female) enrolled in the Health and Aging Brain Study: Health Disparities project were analyzed. Participants underwent clinical evaluation, cognitive testing, and a brain MRI.

View Article and Find Full Text PDF

Medications for type 2 diabetes (T2DM) offer a promising path for discovery and development of effective interventions for dementia syndromes. A common feature of dementia syndromes is an energy failure due to reduced energy supply to neurons and is associated with synaptic loss and results in cognitive decline and behavioral changes. Among diabetes medications, glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) promote protective effects on vascular, microglial, and neuronal functions.

View Article and Find Full Text PDF

Background: Whether racial/ethnic disparities in Alzheimer's disease (AD) risk may be explained by ambient fine particles (PM2.5) has not been studied.

Method: We conducted a prospective, population-based study on a cohort of Black (n = 481) and White (n = 6 004) older women (aged 65-79) without dementia at enrollment (1995-1998).

View Article and Find Full Text PDF

Introduction: Mexican Americans remain severely underrepresented in Alzheimer's disease (AD) research. The Health & Aging Brain among Latino Elders (HABLE) study was created to fill important gaps in the existing literature.

Methods: Community-dwelling Mexican Americans and non-Hispanic White adults and elders (age 50 and above) were recruited.

View Article and Find Full Text PDF

Vascular endothelial growth factor (VEGF) is a complex signaling protein that supports vascular and neuronal function. Alzheimer's disease (AD) -neuropathological hallmarks interfere with VEGF signaling and modify previously detected positive associations between cerebral spinal fluid (CSF) VEGF and cognition and hippocampal volume. However, it remains unknown 1) whether regional relationships between VEGF and glucose metabolism and cortical thinning exist, and 2) whether AD-neuropathological hallmarks (CSF Aβ, t-tau, p-tau) also modify these relationships.

View Article and Find Full Text PDF

As stroke mortality rates decrease, there has been a surge of effort to study poststroke dementia (PSD) to improve long-term quality of life for stroke survivors. Hippocampal volume may be an important neuroimaging biomarker in poststroke dementia, as it has been associated with many other forms of dementia. However, studying hippocampal volume using MRI requires hippocampal segmentation.

View Article and Find Full Text PDF

Background: Past clinical trials of docosahexaenoic Acid (DHA) supplements for the prevention of Alzheimer's disease (AD) dementia have used lower doses and have been largely negative. We hypothesized that larger doses of DHA are needed for adequate brain bioavailability and that APOE4 is associated with reduced delivery of DHA and eicosapentaenoic acid (EPA) to the brain before the onset of cognitive impairment.

Methods: 33 individuals were provided with a vitamin B complex (1 mg vitamin B12, 100 mg of vitamin B6 and 800 mcg of folic acid per day) and randomized to 2,152 mg of DHA per day or placebo over 6 months.

View Article and Find Full Text PDF

Background: Docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and arachidonic acid (AA) play key roles in several metabolic processes relevant to Alzheimer's disease (AD) pathogenesis and neuroinflammation. Carrying the APOEɛ4 allele (APOE4) accelerates omega-3 polyunsaturated fatty acid (PUFA) oxidation. In a pre-planned subgroup analysis of the Alzheimer's Disease Cooperative Study-sponsored DHA clinical trial, APOE4 carriers with mild probable AD had no improvements in cognitive outcomes compared to placebo, while APOE 4 non-carriers showed a benefit from DHA supplementation.

View Article and Find Full Text PDF

Introduction: T1- and T2-weighted sequences from MRI often provide useful complementary information about tissue properties. Leukoaraiosis results in signal abnormalities on T1-weighted images, which are automatically quantified by FreeSurfer, but this marker is poorly characterized and is rarely used. We evaluated associations between white matter hyperintensity (WM-hyper) volume from FLAIR and white matter hypointensity (WM-hypo) volume from T1-weighted images and compared their associations with age and cerebrospinal fluid (CSF) β-amyloid and tau.

View Article and Find Full Text PDF

White matter hyperintensities (WMHs) are brain white matter lesions that are hyperintense on fluid attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) scans. Larger WMH volumes have been associated with Alzheimer's disease (AD) and with cognitive decline. However, the relationship between WMH volumes and cross-sectional cognitive measures has been inconsistent.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research has proposed measuring brain sulci morphology as a new method for detecting Alzheimer's disease (AD), comparing it with traditional imaging techniques.
  • The study involved 51 AD patients and 29 controls, revealing that AD patients had wider sulci and thinner cortex around them, particularly in later disease stages.
  • While sulcal measurements didn't correlate with amyloid levels, they did show connections with cognitive functions, indicating potential use as a diagnostic tool and a way to assess new treatments.
View Article and Find Full Text PDF

Inflammatory processes may contribute to risk for Alzheimer's disease (AD) and age-related brain degeneration. Metabolic and genetic risk factors, and physical activity may, in turn, influence these inflammatory processes. Some of these risk factors are modifiable, and interact with each other.

View Article and Find Full Text PDF

Human brain connectomics is a rapidly evolving area of research, using various methods to define connections or interactions between pairs of regions. Here we evaluate how the choice of (1) regions of interest, (2) definitions of a connection, and (3) normalization of connection weights to total brain connectivity and region size, affect our calculation of the structural connectome. Sex differences in the structural connectome have been established previously.

View Article and Find Full Text PDF

Correlations in activity across disparate brain regions during rest reveal functional networks in the brain. Although previous studies largely agree that there is an age-related decline in the "default mode network," how age affects other resting-state networks, such as emotion-related networks, is still controversial. Here we used a dual-regression approach to investigate age-related alterations in resting-state networks.

View Article and Find Full Text PDF

The purpose of this study was to determine whether white matter microstructure measured by diffusion magnetic resonance imaging (dMRI) provides independent information about baseline level or change in executive function (EF) or memory (MEM) in older adults with and without cognitive impairment. Longitudinal data was acquired from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study from phases GO and 2 (2009-2015). ADNI participants included were diagnosed as cognitively normal (n = 46), early mild cognitive impairment (MCI) (n = 48), late MCI (n = 29), and dementia (n = 39) at baseline.

View Article and Find Full Text PDF