Publications by authors named "Meredith Mcdonald"

This scoping review summarized findings and key measures from U.S.-based studies that 1) examined associations between geographic indicators of structural racism (e.

View Article and Find Full Text PDF

Plants intimately associate with diverse bacteria. Plant-associated bacteria have ostensibly evolved genes that enable them to adapt to plant environments. However, the identities of such genes are mostly unknown, and their functions are poorly characterized.

View Article and Find Full Text PDF

Diverse soil-resident bacteria can contribute to plant growth and health, but the molecular mechanisms enabling them to effectively colonize their plant hosts remain poorly understood. We used randomly barcoded transposon mutagenesis sequencing (RB-TnSeq) in Pseudomonas simiae, a model root-colonizing bacterium, to establish a genome-wide map of bacterial genes required for colonization of the Arabidopsis thaliana root system. We identified 115 genes (2% of all P.

View Article and Find Full Text PDF

Many microbes associate with higher eukaryotes and impact their vitality. To engineer microbiomes for host benefit, we must understand the rules of community assembly and maintenance that, in large part, demand an understanding of the direct interactions among community members. Toward this end, we have developed a Poisson-multivariate normal hierarchical model to learn direct interactions from the count-based output of standard metagenomics sequencing experiments.

View Article and Find Full Text PDF

Immune systems distinguish "self" from "nonself" to maintain homeostasis and must differentially gate access to allow colonization by potentially beneficial, nonpathogenic microbes. Plant roots grow within extremely diverse soil microbial communities but assemble a taxonomically limited root-associated microbiome. We grew isogenic Arabidopsis thaliana mutants with altered immune systems in a wild soil and also in recolonization experiments with a synthetic bacterial community.

View Article and Find Full Text PDF

This study characterized heparin isolated from tuna skins. Glycosaminoglycans were isolated from tuna skin after digestion using anion exchange resin. Heparin was eluted from the resin by sodium chloride gradient and was further fractionated by acetone fractionation.

View Article and Find Full Text PDF