The bright and glossy appearance of the flowers of Ranunculus repens was investigated spectroscopically and the optical results were correlated with the layered anatomy of the petal. The highly directional reflected light arises from the partially transparent, pigment-bearing epidermal layer, while a more diffused yellow colour is the result of scattering from the lower starch layer. This directionality of the light reflections causes the unusually intense gloss of the buttercup flower and the strong yellow reflection evident when holding the flower under the chin.
View Article and Find Full Text PDFAngiosperms possess a variety of complex floral traits that attract animal pollinators. Dark petal spots have evolved independently many times across the angiosperm phylogeny and have been shown to attract insect pollinators from several lineages. Here we present new data on the ontogeny and morphological complexity of the elaborate insect-mimicking petal spots of the South African daisy species, Gorteria diffusa (Asteraceae), commonly known as the beetle daisy, although it is fly-pollinated.
View Article and Find Full Text PDFBackground: Developing a greater understanding of population genetic structure in lowland tropical plant species is highly relevant to our knowledge of increasingly fragmented forests and to the conservation of threatened species. Specific studies are particularly needed for taxa whose population dynamics are further impacted by human harvesting practices. One such case is the fishtail or xaté palm (Chamaedorea ernesti-augusti) of Central America, whose wild-collected leaves are becoming progressively more important to the global ornamental industry.
View Article and Find Full Text PDFSequence data from the low-copy nuclear genes encoding phosphoribulokinase (PRK) and the second largest subunit of RNA polymerase II (RPB2) are used to generate the first phylogenetic analysis of Chamaedorea (Arecaceae: Arecoideae: Chamaedoreeae), the largest neotropical genus of palms. The prevailing current taxonomy of Chamaedorea recognizes approximately 100 species in eight subgenera, all delimited using floral characters, which provide a useful starting point to explore species-level systematics. Sequence data from 63 species, including representatives of all eight subgenera, were analyzed using maximum parsimony and Bayesian inference optimality criteria.
View Article and Find Full Text PDF