Seasonal windows of opportunity represent intervals of time within a year during which organisms have improved prospects of achieving life history aims such as growth or reproduction, and may be commonly structured by temporal variation in abiotic factors, bottom-up factors, and top-down factors. Although seasonal windows of opportunity are likely to be common, few studies have examined the factors that structure seasonal windows of opportunity in time. Here, we experimentally manipulated host-plant age in two milkweed species (Asclepias fascicularis and Asclepias speciosa) in order to investigate the role of plant-species-specific and plant-age-varying traits on the survival and growth of monarch caterpillars (Danaus plexippus).
View Article and Find Full Text PDFMany organisms experience seasonal windows of opportunity for growth and reproduction. These windows represent intervals in time when organisms experience improved prospects for advancing their life history objectives, constrained by the combined effects of seasonally variable biotic and abiotic conditions acting independently or in combination. Although seasonal windows of opportunity are likely to be widespread in nature, relatively few studies have conducted the repeated observations necessary to identify them or suggest the factors that structure them in time.
View Article and Find Full Text PDFNatural selection can produce local adaptation, but local adaptation can be masked by maladaptive plasticity. Maladaptive plasticity may arise as a result of gene flow producing novel gene combinations that have not been exposed to selection. In the 1980s, populations of the red-shouldered soapberry bug (Jadera haematoloma) were locally adapted to feed on the seeds of a native host plant and an introduced host plant; by 2014, local differentiation in beak length had been lost, likely as a consequence of increased gene flow.
View Article and Find Full Text PDFLocally adapted populations are often used as model systems for the early stages of ecological speciation, but most of these young divergent populations will never become complete species. The maintenance of local adaptation relies on the strength of natural selection overwhelming the homogenizing effects of gene flow; however, this balance may be readily upset in changing environments. Here I show that soapberry bugs (Jadera haematoloma) have lost adaptations to their native host plant (Cardiospermum corindum) and are regionally specializing on an invasive host (Koelreuteria elegans), collapsing a classic and well-documented example of local adaptation.
View Article and Find Full Text PDF