Smells can arise from a source external to the body and stimulate the olfactory epithelium upon inhalation through the nares (orthonasal olfaction). Alternatively, smells may arise from inside the mouth during consumption, stimulating the epithelium upon exhalation (retronasal olfaction). Both ortho- and retronasal olfaction produce highly salient percepts, but the two percepts have very different behavioral implications.
View Article and Find Full Text PDFPrimary gustatory cortex (GC) is connected (both mono- and polysynaptically) to primary olfactory (piriform) cortex (PC)-connections that might be hypothesized to underlie the construction of a "flavor" percept when both gustatory and olfactory stimuli are present. Here we use multisite electrophysiology and optical inhibition of GC neurons (GCx, produced via infection with ArchT) to demonstrate that, indeed, during gustatory stimulation, taste-selective information is transmitted from GC to PC. We go on to show that these connections impact olfactory processing even in the absence of gustatory stimulation: GCx alters PC responses to olfactory stimuli presented alone, enhancing some and eliminating others, despite leaving the path from nasal epithelium to PC intact.
View Article and Find Full Text PDFSemiochemicals are volatile compounds that communicate specific meaning between individuals and elicit specific behavioral and/or physiological responses mediated by highly sensitive and highly specific olfactory pathways. Recent work suggests that semiochemicals can activate multiple olfactory pathways at once, but the degree to which parallel pathways activated by the same semiochemical interact and what the behavioral consequences of such interactions are remains a topic of debate. Here, we approached this question behaviorally, investigating whether rats could be trained to avoid carbon disulfide (CS₂; conditional stimulus) via taste-potentiated odor aversion, and asking whether any such learning would have an impact on rats' subsequent use of CS₂ as a semiochemical cue (i.
View Article and Find Full Text PDFTissue injury during a critical period of early postnatal development can alter pain sensitivity throughout life. However, the degree to which neonatal tissue damage exerts prolonged effects on synaptic signaling within adult spinal nociceptive circuits remains unknown. Here we provide evidence that a transient surgical injury of the hind paw during the neonatal period compromises inhibitory transmission within the adult mouse superficial dorsal horn (SDH), while the same incision occurring during the third week of life failed to evoke these long-term modifications of the SDH synaptic network.
View Article and Find Full Text PDFPacemaker neurons in neonatal spinal nociceptive circuits generate intrinsic burst firing and are distinguished by a lower "leak" membrane conductance compared with adjacent nonbursting neurons. However, little is known about which subtypes of leak channels regulate the level of pacemaker activity within the developing rat superficial dorsal horn (SDH). Here we demonstrate that a hallmark feature of lamina I pacemaker neurons is a reduced conductance through inward-rectifying potassium (K(ir)) channels at physiological membrane potentials.
View Article and Find Full Text PDF