Publications by authors named "Meredith Kernbach"

Turtlegrass virus X, which infects the seagrass , is the only potexvirus known to infect marine flowering plants. We investigated potexvirus distribution in seagrasses using a degenerate reverse transcription polymerase chain reaction (RT-PCR) assay originally designed to capture potexvirus diversity in terrestrial plants. The assay, which implements Potex-5 and Potex-2RC primers, successfully amplified a 584 nt RNA-dependent RNA polymerase (RdRp) fragment from TVX-infected seagrasses.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how seasonality affects the susceptibility and transmission of the West Nile virus (WNV) in house sparrows, focusing on the relationship between host physiological changes and the virus's prevalence.
  • - It was hypothesized that sparrows would be most vulnerable to WNV during breeding and molting, but findings showed they were most transmissive in the fall, aligning with higher environmental virus prevalence.
  • - While the results suggest that seasonal changes in the birds may influence arboviral cycles, the study calls for further research on other species and contexts to fully understand the dynamics of disease transmission.
View Article and Find Full Text PDF

Light pollution, or the presence of artificial light at night (ALAN), is among the fastest growing but least understood anthropogenic stressor on the planet. While historically light pollution has not received attention comparable to climate change or chemical pollution, research over the past several decades has revealed the plethora of negative effects on humans, animals, and supporting ecosystems. As light pollution continues to grow in spatial, spectral, and temporal extent, we recognize the urgent need to understand how this affects circadian physiology, organismal fitness, life history traits and tradeoffs, population trends, and community interactions.

View Article and Find Full Text PDF

Artificial light at night (ALAN) is a pervasive anthropogenic pollutant, emanating from urban and suburban developments and reaching nearly all ecosystems from dense forests to coastlines. One proposed strategy for attenuating the consequences of ALAN is to modify its spectral composition to forms that are less disruptive for photosensory systems. However, ALAN is a complicated pollutant to manage due to the extensive variation in photosensory mechanisms and the diverse ways these mechanisms manifest in biological and ecological contexts.

View Article and Find Full Text PDF

Emerging infectious diseases (EIDs) present global health threats, and their emergences are often linked to anthropogenic change. Artificial light at night (ALAN) is one form of anthropogenic change that spans beyond urban boundaries and may be relevant to EIDs through its influence on the behaviour and physiology of hosts and/or vectors. Although West Nile virus (WNV) emergence has been described as peri-urban, we hypothesized that exposure risk could also be influenced by ALAN in particular, which is testable by comparing the effects of ALAN on prevalence while controlling for other aspects of urbanization.

View Article and Find Full Text PDF

Wild animals are exposed to both short- (acute) and long-term (chronic) stressors. The glucocorticoid hormones, such as corticosterone (CORT), facilitate coping with such stressors, but these hormones can have quite distinct effects contingent on the duration of their elevation. Previously, we found that experimental elevation of CORT for 2 days (via implantation) affected zebra finch () responses to West Nile virus (WNV).

View Article and Find Full Text PDF

Among the many anthropogenic changes that impact humans and wildlife, one of the most pervasive but least understood is light pollution. Although detrimental physiological and behavioural effects resulting from exposure to light at night are widely appreciated, the impacts of light pollution on infectious disease risk have not been studied. Here, we demonstrate that artificial light at night (ALAN) extends the infectious-to-vector period of the house sparrow (Passer domesticus), an urban-dwelling avian reservoir host of West Nile virus (WNV).

View Article and Find Full Text PDF

Light pollution has emerged as a pervasive component of land development over the past century. Several detrimental impacts of this anthropogenic influence have been identified in night shift workers, laboratory rodents, and a plethora of wildlife species. Circadian, or daily, patterns are interrupted by the presence of light at night and have the capacity to alter rhythmic physiological or behavioral characteristics.

View Article and Find Full Text PDF

Chronic, low-intensity parasite infections can reduce host fitness through negative impacts on reproduction and survival, even if they produce few overt symptoms. As a result, these parasites can influence the evolution of host morphology, behaviour and physiology. The physiological consequences of chronic infection can provide insight into the processes underlying parasite-driven natural selection.

View Article and Find Full Text PDF