Publications by authors named "Meredith Jackson"

The progression of osteoarthritis is associated with inflammation triggered by the enzymatic degradation of extracellular matrix in injured cartilage. Here we show that a locally injected depot of nanoparticles functionalized with an antibody targeting type II collagen and carrying small interfering RNA targeting the matrix metalloproteinase 13 gene (Mmp13), which breaks down type II collagen, substantially reduced the expression of MMP13 and protected cartilage integrity and overall joint structure in acute and severe mouse models of post-traumatic osteoarthritis. MMP13 inhibition suppressed clusters of genes associated with tissue restructuring, angiogenesis, innate immune responses and proteolysis.

View Article and Find Full Text PDF

Child life programs are an important component of pediatric hospital-based care; they address the psychosocial concerns that accompany hospitalization and other health care experiences. Child life specialists focus on the optimal development and well-being of infants, children, adolescents, and young adults while promoting coping skills and minimizing the adverse effects of hospitalization, health care encounters, and/or other potentially stressful experiences. In collaboration with the entire health care team and family, child life specialists provide interventions that include therapeutic play, expressive modalities, and psychological preparation to facilitate coping and normalization at times and under circumstances that might otherwise prove overwhelming for the child.

View Article and Find Full Text PDF

This work establishes that Kupffer cell release of platelet activating factor (PAF), a lipidic molecule with pro-inflammatory and vasoactive signaling properties, dictates dose-limiting siRNA nanocarrier-associated toxicities. High-dose intravenous injection of siRNA-polymer nano-polyplexes (si-NPs) elicited acute, shock-like symptoms in mice, associated with increased plasma PAF and consequently reduced PAF acetylhydrolase (PAF-AH) activity. These symptoms were completely prevented by prophylactic PAF receptor inhibition or Kupffer cell depletion.

View Article and Find Full Text PDF

Purpose: We tested polyplexes of a diblock polymer containing a pH-responsive, endosomolytic core (dimethylaminoethyl methacrylate and butyl methacrylate; DB) and a zwitterionic Poly (methacryloyloxyethyl phosphorylcholine) (PMPC) corona for the delivery of plasmid DNA (pDNA) to glioblastoma cells.

Methods: We studied the physicochemical characteristics of the DNA polyplexes such as particle hydrodynamic diameter and surface potential. Cytocompatibility of free PMPC-DB polymer and pDNA polyplexes with U-87MG and U-138MG glioma cell lines were evaluated using the ATP assay.

View Article and Find Full Text PDF

Endolysosome entrapment is one of the key barriers to the therapeutic use of biologic drugs that act intracellularly. The screening of prospective nanoscale endosome-disrupting delivery technologies is currently limited by methods that are indirect and cumbersome. Here, we statistically validate Galectin 8 (Gal8) intracellular tracking as a superior approach that is direct, quantitative, and predictive of therapeutic cargo intracellular bioactivity through in vitro high-throughput screening and in vivo validation.

View Article and Find Full Text PDF

While polymeric nano-formulations for RNAi therapeutics hold great promise for molecularly-targeted, personalized medicine, they possess significant systemic delivery challenges including rapid clearance from circulation and the potential for carrier-associated toxicity due to cationic polymer or lipid components. Herein, we evaluated the in vivo pharmacokinetic and safety impact of often-overlooked formulation parameters, including the ratio of carrier polymer to cargo siRNA and hydrophobic siRNA modification in combination with hydrophobic polymer components (dual hydrophobization). For these studies, we used nano-polyplexes (NPs) with well-shielded, zwitterionic coronas, resulting in various NP formulations of equivalent hydrodynamic size and neutral surface charge regardless of charge ratio.

View Article and Find Full Text PDF

Small-molecule inhibitors of the mTORC2 kinase (torkinibs) have shown efficacy in early clinical trials. However, the torkinibs under study also inhibit the other mTOR-containing complex mTORC1. While mTORC1/mTORC2 combined inhibition may be beneficial in cancer cells, recent reports describe compensatory cell survival upon mTORC1 inhibition due to loss of negative feedback on PI3K, increased autophagy, and increased macropinocytosis.

View Article and Find Full Text PDF

Clinical translation of therapies based on small interfering RNA (siRNA) is hampered by siRNA's comprehensively poor pharmacokinetic properties, which necessitate molecule modifications and complex delivery strategies. We sought an alternative approach to commonly used nanoparticle carriers by leveraging the long-lived endogenous serum protein albumin as an siRNA carrier. We synthesized siRNA conjugated to a diacyl lipid moiety (siRNA-L), which rapidly binds albumin in situ.

View Article and Find Full Text PDF

Although siRNA-based nanomedicines hold promise for cancer treatment, conventional siRNA-polymer complex (polyplex) nanocarrier systems have poor pharmacokinetics following intravenous delivery, hindering tumor accumulation. Here, we determined the impact of surface chemistry on the in vivo pharmacokinetics and tumor delivery of siRNA polyplexes. A library of diblock polymers was synthesized, all containing the same pH-responsive, endosomolytic polyplex core-forming block but different corona blocks: 5 kDa (benchmark) and 20 kDa linear polyethylene glycol (PEG), 10 kDa and 20 kDa brush-like poly(oligo ethylene glycol), and 10 kDa and 20 kDa zwitterionic phosphorylcholine-based polymers (PMPC).

View Article and Find Full Text PDF

A rationally-designed library of ternary siRNA polyplexes was developed and screened for gene silencing efficacy in vitro and in vivo with the goal of overcoming both cell-level and systemic delivery barriers. [2-(dimethylamino)ethyl methacrylate] (DMAEMA) was homopolymerized or copolymerized (50mol% each) with butyl methacrylate (BMA) from a reversible addition - fragmentation chain transfer (RAFT) chain transfer agent, with and without pre-conjugation to polyethylene glycol (PEG). Both single block polymers were tested as core-forming units, and both PEGylated, diblock polymers were screened as corona-forming units.

View Article and Find Full Text PDF

When plasmonic nanoparticles (NPs) are internalized by cells and agglomerate within intracellular vesicles, their optical spectra can shift and broaden as a result of plasmonic coupling of NPs in close proximity to one another. For such optical changes to be accounted for in the design of plasmonic NPs for light-based biomedical applications, quantitative design relationships between designable factors and spectral shifts need to be established. Here we begin building such a framework by investigating how functionalization of gold NPs (AuNPs) with biocompatible poly(ethylene) glycol (PEG), and the serum conditions in which the NPs are introduced to cells impact the optical changes exhibited by NPs in a cellular context.

View Article and Find Full Text PDF

Formation of stable, long-circulating siRNA polyplexes is a significant challenge in translation of intravenously-delivered, polymeric RNAi cancer therapies. Here, we report that siRNA hydrophobization through conjugation to palmitic acid (siPA) improves stability, in vivo pharmacokinetics, and tumor gene silencing of PEGylated nanopolyplexes (siPA-NPs) with balanced cationic and hydrophobic content in the core relative to the analogous polyplexes formed with unmodified siRNA, si-NPs. Hydrophobized siPA loaded into the NPs at a lower charge ratio (N(+):P(-)) relative to unmodified siRNA, and siPA-NPs had superior resistance to siRNA cargo unpackaging in comparison to si-NPs upon exposure to the competing polyanion heparin and serum.

View Article and Find Full Text PDF

Metal nanoparticles (NPs) scatter and absorb light in precise, designable ways, making them agile candidates for a variety of biomedical applications. When NPs are introduced to a physiological environment and interact with cells, their physicochemical properties can change as proteins adsorb on their surface and they agglomerate within intracellular endosomal vesicles. Since the plasmonic properties of metal NPs are dependent on their geometry and local environment, these physicochemical changes may alter the NPs' plasmonic properties, on which applications such as plasmonic photothermal therapy and photonic gene circuits are based.

View Article and Find Full Text PDF

Acute exposure to toluene and other volatile organic solvents results in neurotoxicity characterized by nervous system depression, cognitive and motor impairment, and alterations in visual function. In vitro, toluene disrupts the function of N-methyl-D-aspartate (NMDA)-glutamate receptors, indicating that effects on NMDA receptor function may contribute to toluene neurotoxicity. NMDA-glutamate receptors are widely present in the visual system and contribute to pattern-elicited visual-evoked potentials (VEPs) in rodents, a measure that is altered by toluene exposure.

View Article and Find Full Text PDF