Variation in the structure of host-associated microbial communities has been correlated with the occurrence and severity of disease in diverse host taxa, suggesting a key role of the microbiome in pathogen defense. However, whether these correlations are typically a cause or consequence of pathogen exposure remains an open question, and requires experimental approaches to disentangle. In amphibians, infection by the fungal pathogen Batrachochytrium dendrobatidis (Bd) alters the skin microbial community in some host species, whereas in other species, the skin microbial community appears to mediate infection dynamics.
View Article and Find Full Text PDFOne current challenge in microbial ecology is elucidating the functional roles of the large diversity of free-living and host-associated bacteria identified by culture-independent molecular methods. Importantly, the characterization of this immense bacterial diversity will likely require merging data from culture-independent approaches with work on bacterial isolates in culture. Amphibian skin bacterial communities have become a recent focus of work in host-associated microbial systems due to the potential role of these skin bacteria in host defense against the pathogenic fungus (Bd), which is associated with global amphibian population declines and extinctions.
View Article and Find Full Text PDFSome amphibian skin bacteria inhibit growth of a fungal amphibian pathogen, Batrachochytrium dendrobatidis (Bd), but it is unclear how dominant these anti-Bd bacteria are in skin communities. Using in vitro co-culture challenge assays, we quantified Bd inhibition by bacterial isolates collected from the skin of four amphibian species: bullfrogs, Eastern newts, spring peepers and American toads. The 16S rRNA sequences for each isolate were matched to culture-independent amplicon sequences from the same individuals to assess inhibitory function versus relative abundance.
View Article and Find Full Text PDFCurrently, it is estimated that only 0.001% to 15% of bacteria in any given system can be cultured by use of commonly used techniques and media, yet culturing is critically important for investigations of bacterial function. Despite this situation, few studies have attempted to link culture-dependent and culture-independent data for a single system to better understand which members of the microbial community are readily cultured.
View Article and Find Full Text PDF