Intrauterine infection is a significant cause of neonatal morbidity and mortality. Ureaplasma parvum is a microorganism commonly isolated from cases of preterm birth and preterm premature rupture of membranes (pPROM). However, the mechanisms of early stage ascending reproductive tract infection remain poorly understood.
View Article and Find Full Text PDFIntrauterine infection is a significant cause of preterm labor and neonatal morbidity and mortality. is the micro-organism most commonly isolated from cases of preterm birth and preterm premature rupture of membranes (pPROM). However, the mechanisms during the early stages of ascending reproductive tract infection that initiate maternal-fetal inflammatory pathways, preterm birth and pPROM remain poorly understood.
View Article and Find Full Text PDFCreatine metabolism is an important component of cellular energy homeostasis. Via the creatine kinase circuit, creatine derived from our diet or synthesized endogenously provides spatial and temporal maintenance of intracellular adenosine triphosphate (ATP) production; this is particularly important for cells with high or fluctuating energy demands. The use of this circuit by tissues within the female reproductive system, as well as the placenta and the developing fetus during pregnancy is apparent throughout the literature, with some studies linking perturbations in creatine metabolism to reduced fertility and poor pregnancy outcomes.
View Article and Find Full Text PDFBackground: Ureaplasma parvum infection is a prevalent cause of intrauterine infection associated with preterm birth, preterm premature rupture of membranes, fetal inflammatory response syndrome, and adverse postnatal sequelae. Elucidation of diagnostic and treatment strategies for infection-associated preterm labor may improve perinatal and long-term outcomes for these cases.
Objective: This study assessed the effect of intraamniotic Ureaplasma infection on fetal hemodynamic and cardiac function and the effect of maternal antibiotic treatment on these outcomes.
Zika virus infection during pregnancy is associated with miscarriage and with a broad spectrum of fetal and neonatal developmental abnormalities collectively known as congenital Zika syndrome (CZS). Symptomology of CZS includes malformations of the brain and skull, neurodevelopmental delay, seizures, joint contractures, hearing loss and visual impairment. Previous studies of Zika virus in pregnant rhesus macaques (Macaca mulatta) have described injury to the developing fetus and pregnancy loss, but neonatal outcomes following fetal Zika virus exposure have yet to be characterized in nonhuman primates.
View Article and Find Full Text PDFBackgroundIntrauterine infection is a significant cause of early preterm birth. We have developed a fetal-neonatal model in the rhesus macaque to determine the impact of chronic intrauterine infection with Ureaplasma parvum on early neonatal reflexes and brain development.MethodsTime-mated, pregnant rhesus macaques were randomized to be inoculated with U.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
June 2016
Elevated levels of neurosteroids during late gestation protect the fetal brain from hypoxia/ischaemia and promote neurodevelopment. Suppression of allopregnanolone production during pregnancy leads to the onset of seizure-like activity and potentiates hypoxia-induced brain injury. Markers of myelination are reduced and astrocyte activation is increased.
View Article and Find Full Text PDFIntrauterine growth restriction (IUGR) is a risk factor for preterm labor; however, the mechanisms of the relationship remain unknown. Prostaglandin (PG), key stimulants of labor, availability is regulated by the synthetic enzymes, prostaglandin endoperoxidases 1 and 2 (PTGS1 and 2), and the metabolizing enzyme, 15-hydroxyprostaglandin dehydrogenase (HPGD). We hypothesized that IUGR increases susceptibility to preterm labor due to the changing balance of synthetic and metabolizing enzymes and hence greater PG availability.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
January 2014
Neuroactive steroid concentrations are remarkably high in the foetal brain during late gestation. These concentrations are maintained by placental progesterone synthesis and the interaction of enzymes in the placenta and foetal brain. 5α-Pregnane-3α-ol-20-one (allopregnanolone) is a key neuroactive steroid during foetal life, although other 3α-hydroxy-pregnanes may make an additional contribution to neuroactive steroid action.
View Article and Find Full Text PDFBackground: Preterm birth is a major cause of neurodevelopmental disorders. Allopregnanolone, a key metabolite of progesterone, has neuroprotective and developmental effects in the brain. The objectives of this study were to measure the neuroactive steroid concentrations following preterm delivery in a neonatal guinea pig model and assess the potential for postnatal progesterone replacement therapy to affect neuroactive steroid brain and plasma concentrations in preterm neonates.
View Article and Find Full Text PDFIntroduction: Microvascular dysfunction, characterized by inappropriate vasodilatation and high blood flow in the peripheral microcirculation, is linked to physiologic instability and poor outcome in neonates. Specifically, preterm neonates have significantly higher levels of baseline microvascular blood flow than term neonates at 24 h postnatal age. Because of similarities between human and guinea pig endocrine profiles and maturity at birth, we hypothesized that preterm guinea pig neonates would provide a suitable model for studying the mechanisms underlying transitional microvascular function.
View Article and Find Full Text PDFProgesterone and its neuroactive metabolite, allopregnanolone, are present in high concentrations during pregnancy, but drop significantly following birth. Allopregnanolone influences foetal arousal and enhances cognitive and behavioural recovery following traumatic brain injury. Inhibition of allopregnanolone synthesis increases cell death in foetal animal brains with experimental hypoxia.
View Article and Find Full Text PDF