Publications by authors named "Mercurio F"

In recent decades, peptides have attracted significant attention not only from Academia but also from big Pharma as novel potential therapeutic compounds [...

View Article and Find Full Text PDF
Article Synopsis
  • Peptide building blocks can create supramolecular nanostructures that effectively deliver various drugs while their design impacts the ability of these structures to interact with specific drugs.
  • The study focuses on hybrid cationic peptide hydrogels, combining a low-molecular-weight hydrogelator with different cationic amphiphilic peptides to analyze their structural properties.
  • Findings indicate that the hydrogel's structure is primarily determined by the hydrogelator, while the peptides' alkyl chain lengths significantly influence the material's morphology, stiffness, and drug encapsulation capabilities.
View Article and Find Full Text PDF
Article Synopsis
  • The Sam domain of Ship2 interacts with EphA2, contributing to cancer development, making this connection a potential therapeutic target.
  • Researchers used FoldX software to design peptides that could disrupt the EphA2-Sam/Ship2-Sam complex, focusing on the Mid Loop interface of Ship2-Sam.
  • Promising new peptides were tested to assess their effectiveness in disrupting the interaction, their cytotoxic effects on cancer versus healthy cells, and their role in EphA2 degradation, paving the way for future strategies in targeting similar protein interactions.
View Article and Find Full Text PDF

The Sam (sterile alpha motif) domain from the lipid phosphatase Ship2 binds the Sam domain from the EphA2 receptor to negatively regulate receptor endocytosis and degradation. This interaction is primarily linked to pro-oncogenic effects. We report on the design and evaluation of EphA2-Sam/Ship2-Sam peptide inhibitors provided with positive charges and different aromatic characters.

View Article and Find Full Text PDF

Importance: The recent change in terminology from nonalcoholic fatty liver disease (NAFLD) to metabolic dysfunction-associated fatty liver disease (MAFLD) and metabolic dysfunction-associated steatotic liver disease (MASLD) highlights the link between hepatic steatosis and metabolic dysfunction, taking out the stigmata of alcohol.

Objective: We compared the effects of NAFLD and MAFLD definitions on the risk of overall and cardiovascular (CV) mortality, liver-related events (LRE), nonfatal CV events (CVE), chronic kidney disease (CKD), and extra-hepatic cancers (EHC).

Data Sources And Study Selection: We systematically searched four large electronic databases for cohort studies (published through August 2023) that simultaneously used NAFLD and MAFLD definitions for examining the risk of mortality and adverse CV, renal, or oncological outcomes associated with both definitions.

View Article and Find Full Text PDF

Introduction: SOCS3 (suppressor of cytokine signaling 3) protein is a crucial regulator of cytokine-induced inflammation, and its administration has been shown to have therapeutic effects. Recently, we designed a chimeric proteomimetic of SOCS3, mimicking the interfacing regions of a ternary complex composed of SOCS3, JAK2 (Janus kinase 2) and gp130 (glycoprotein 130) proteins. The derived chimeric peptide, KIRCONG chim, demonstrated limited mimetic function owing to its poor water solubility.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD), with its steadily increasing prevalence, represents now a major problem in public health. A proper referral could benefit from tools allowing more precise risk stratification. To this end, in recent decades, several genetic variants that may help predict and refine the risk of development and progression of MASLD have been investigated.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the interaction between lipid phosphatase Ship2 and the EphA2 receptor, highlighting Ship2’s role as a negative regulator of receptor endocytosis and its potential anti-cancer effects.
  • A computational approach was employed to explore how mutations within the EphA2-Sam and Ship2-Sam binding interfaces might contribute to cancer development and progression, utilizing data from the COSMIC database.
  • The research included analyzing the physical properties of mutant versus wild-type Sam domains, developing 3D structural models, and employing docking techniques to assess how these mutations might affect receptor interactions and endocytosis.
View Article and Find Full Text PDF

Over the last few decades, we have witnessed growing interest from both academic and industrial laboratories in peptides as possible therapeutics. Bioactive peptides have a high potential to treat various diseases with specificity and biological safety. Compared to small molecules, peptides represent better candidates as inhibitors (or general modulators) of key protein-protein interactions.

View Article and Find Full Text PDF

The physical and chemical properties of paddlewheel diruthenium compounds are highly dependent on the nature of the ligands surrounding the bimetallic core. Herein, we compare the ability of two diruthenium compounds, [RuCl(D--FPhF)(OCCH)]·HO () (D--FPhF = -bis(4-fluorophenyl)formamidinate) and K[Ru(OCO)]·3HO (), to act as inhibitors of amyloid aggregation of the Aβ peptide and its peculiar fragments, Aβ and Aβ. A wide range of biophysical techniques has been used to determine the inhibition capacity against aggregation and the possible mechanism of action of these compounds (Thioflavin T fluorescence and autofluorescence assays, UV-vis absorption spectroscopy, circular dichroism, nuclear magnetic resonance, mass spectrometry, and electron scanning microscopy).

View Article and Find Full Text PDF

Background: The receptor tyrosine kinase EphA2 plays a role in many diseases, like cancer, cataracts, and osteoporosis. Interestingly, it has also been linked to viral infections.

Objective: Herein, current literature has been reviewed to clarify EphA2 functions in viral infections and explore its potential role as a target in antiviral drug discovery strategies.

View Article and Find Full Text PDF

Peptide nucleic acids and their conjugates to peptides can self-assemble and generate complex architectures. In this work, we explored the self-assembly of PNA dimers conjugated to the dipeptide WW. Our studies suggest that the indole ring of tryptophan promotes aggregation of the conjugates.

View Article and Find Full Text PDF

In a protein, point mutations associated with diseases can alter the native structure and provide loss or alteration of functional levels, and an internal structural network defines the connectivity among domains, as well as aggregate/soluble states' equilibria. Nucleophosmin (NPM)1 is an abundant nucleolar protein, which becomes mutated in acute myeloid leukemia (AML) patients. NPM1-dependent leukemogenesis, which leads to its aggregation in the cytoplasm (NPMc+), is still obscure, but the investigations have outlined a direct link between AML mutations and amyloid aggregation.

View Article and Find Full Text PDF

Background: In the last few years, in silico tools, including drug repurposing coupled with structure-based virtual screening, have been extensively employed to look for anti-COVID-19 agents.

Objective: The present review aims to provide readers with a portrayal of computational approaches that could be conducted more quickly and cheaply to novel anti-viral agents. Particular attention is given to docking-based virtual screening.

View Article and Find Full Text PDF

Suppressors of cytokine signaling 1 (SOCS1) protein, a negative regulator of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway, possesses a small kinase inhibitory region (KIR) involved in the inhibition of JAK kinases. Several studies showed that mimetics of KIR-SOCS1 can be potent therapeutics in several disorders (e.g.

View Article and Find Full Text PDF

Among the diverse protein binding modules, Sam (Sterile alpha motif) domains attract attention due to their versatility. They are present in different organisms and play many functions in physiological and pathological processes by binding multiple partners. The EphA2 receptor contains a Sam domain at the C-terminus (EphA2-Sam) that is able to engage protein regulators of receptor stability (including the lipid phosphatase Ship2 and the adaptor Odin).

View Article and Find Full Text PDF

SOCS3 (suppressor of cytokine signaling 3) protein suppresses cytokine-induced inflammation and its deletion in neurons or immune cells increases the pathological growth of blood vessels. Recently, we designed several SOCS3 peptidomimetics by assuming as template structures the interfacing regions of the ternary complex constituted by SOCS3, JAK2 (Janus Kinase 2) and gp130 (glycoprotein 130) proteins. A chimeric peptide named KIRCONG chim, including non-contiguous regions demonstrated able to bind to JAK2 and anti-inflammatory and antioxidant properties in VSMCs (vascular smooth muscle cells).

View Article and Find Full Text PDF

Herein we investigated the structural and cellular effects ensuing from the cyclization of a potent inhibitor of JAK2 as mimetic of SOCS1 protein, named PS5. The introduction of un-natural residues and a lactam internal bridge, within SOCS1-KIR motif, produced candidates that showed high affinity toward JAK2 catalytic domain. By combining CD, NMR and computational studies, we obtained valuable models of the interactions of two peptidomimetics of SOCS1 to deepen their functional behaviors.

View Article and Find Full Text PDF

In the present work, structural features of the interaction between peptide nucleic acid (PNA)-based analogs of the tumor-suppressor microRNA-34a with both its binding sites on MYCN mRNA were investigated. In particular, the region from base 1 to 8 ("seed" region) of miR-34a was reproduced in the form of an 8-mer PNA fragment (tiny PNA), and binding to target 3'UTR MYCN mRNA, was studied by a seldom reported and detailed NMR characterization, providing evidence for the formation of anti-parallel duplexes with a well-organized structural core. The formation of PNA-3'UTR duplexes was also confirmed by Circular Dichroism, and their melting curves were measured by UV spectroscopy.

View Article and Find Full Text PDF

Small molecules targeting the cereblon-containing E3 ubiquitin ligase including thalidomide, lenalidomide, and pomalidomide modulate turnover of downstream client proteins and demonstrate pre-clinical and clinical anti-myeloma activity. Different drugs that engage with cereblon hold the potential of unique phenotypic effects, and we therefore studied the novel protein homeostatic modulator (PHM™) BTX306 with a unique thiophene-fused scaffold bearing a substituted phenylurea and glutarimide. This agent much more potently reduced human-derived myeloma cell line viability, with median inhibitory concentrations in the single nanomolar range versus micromolar values for lenalidomide or pomalidomide, and more potently activated caspases 3/8/9.

View Article and Find Full Text PDF

Background: NMR spectroscopy is one of the most powerful tools to study the structure and interaction properties of peptides and proteins from a dynamic perspective. Knowing the bioactive conformations of peptides is crucial in the drug discovery field to design more efficient analogue ligands and inhibitors of protein-protein interactions targeting therapeutically relevant systems.

Objective: This review provides a toolkit to investigate peptide conformational properties by NMR.

View Article and Find Full Text PDF

The immunomodulatory effects of Suppressor of Cytokine Signaling (SOCS) proteins, that control the JAK/STAT pathway, indicate them as attractive candidates for immunotherapies. Recombinant SOCS3 protein suppresses the effects of inflammation, and its deletion in neurons or in immune cells increases pathological blood vessels growth. Recently, on the basis of the structure of the ternary complex among SOCS3, JAK2, and gp130, we focused on SOCS3 interfacing regions and designed several interfering peptides (IPs) that were able to mimic SOCS3 biological role in triple negative breast cancer (TNBC) models.

View Article and Find Full Text PDF

Essential oils (EOs) have been known for a long time, and they are used in several fields such as medicine and aromatherapy, as well as in the food and pharmaceutical industries. In the last decade, EOs have also been applied to contrast the biodeterioration of cultural heritage, representing a powerful resource in green conservation strategies. In this study, an integrated approach based on microscopic observation, in vitro culture, and molecular investigation was preliminarily employed to identify biological systems colonizing wooden artworks.

View Article and Find Full Text PDF

Background: Proteins present a modular organization made up of several domains. Apart from the domains playing catalytic functions, many others are crucial to recruit interactors. The latter domains can be defined as "PIDs" (Protein Interaction Domains) and are responsible for pivotal outcomes in signal transduction and a certain array of normal physiological and disease-related pathways.

View Article and Find Full Text PDF

Microalgae are an excellent source of valuable compounds for nutraceutical and cosmeceutical applications. These photosynthesizing microorganisms are amenable for large-scale production, thus overcoming the bottleneck of biomass supply for chemical and activity characterization of bioactive compounds. This characteristic has recently also prompted the screening of microalgae for potential pharmaceutical applications.

View Article and Find Full Text PDF