Quinones can in principle be viewed as a double-edged sword in the treatment of neurodegenerative diseases, since they are often cytoprotective but can also be cytotoxic due to covalent and redox modification of biomolecules. Nevertheless, low doses of moderately electrophilic quinones are generally cytoprotective, mainly due to their ability to activate the Keap1/Nrf2 pathway and thus induce the expression of detoxifying enzymes. Some natural quinones have relevant roles in important physiological processes.
View Article and Find Full Text PDFThe environmental presence of anions of natural origin or anthropogenic origin is gradually increasing. As a tool to tackle this problem, carbazole derivatives are an attractive gateway to the development of luminescent chemosensors. Considering the different mechanisms proposed for anion recognition, the fluorescence properties and anion-binding response of several newly synthesised carbazole derivatives were studied.
View Article and Find Full Text PDFHybrids based on an aza-analogue of CGP37157, a mitochondrial Na/Ca exchanger antagonist, and lipoic acid were obtained in order to combine in a single molecule the antioxidant and NRF2 induction properties of lipoic acid and the neuroprotective activity of CGP37157. The four possible enantiomers of the hybrid structure were synthesized by using as the key step a fully diastereoselective reduction induced by Ellman's chiral auxiliary. After computational druggability studies that predicted good ADME profiles and blood-brain permeation for all compounds, the DPPH assay showed moderate oxidant scavenger capacity.
View Article and Find Full Text PDFCurcumin shows a broad spectrum of activities of relevance in the treatment of Alzheimer's disease (AD); however, it is poorly absorbed and is also chemically and metabolically unstable, leading to a very low oral bioavailability. A small library of hybrid compounds designed as curcumin analogues and incorporating the key structural fragment of piperlongumine, a natural neuroinflammation inhibitor, were synthesized by a two-step route that combines a three-component reaction between primary amines, β-ketoesters and α-haloesters and a base-promoted acylation with cinnamoyl chlorides. These compounds were predicted to have good oral absorption and CNS permeation, had good scavenging properties in the in vitro DPPH experiment and in a cellular assay based on the oxidation of dichlorofluorescin to a fluorescent species.
View Article and Find Full Text PDFOxidative stress is crucial to the outbreak and advancement of neurodegenerative diseases and is a common factor to many of them. We describe the synthesis of a library of derivatives of the 4-arylmethylen-2-pyrrolin-5-one framework by sequential application of a three-component reaction of primary amines, β-dicarbonyl compounds, and α-haloketones and a Knoevenagel condensation. These compounds can be viewed as cyclic amides of caffeic and ferulic acids, and are also structurally related to the bisavenanthramide family of natural antioxidants.
View Article and Find Full Text PDFA step- and atom-economical protocol allowing the synthesis of 1,4-diazepanes and also tetrahydro- and decahydro-1,5-benzodiazepines is described. The method proceeds from very simple starting materials such as 1,2-diamines and alkyl 3-oxohex-5-enoates and can be performed under solvent-free conditions in many instances. The key event of this process was the generation of an aza-Nazarov reagent and its subsequent intramolecular aza-Michael cyclization.
View Article and Find Full Text PDFNRF2 acts by controlling gene expression, being the master regulator of the Phase II antioxidant response, and also being key to the control of neuroinflammation. NRF2 activity is regulated at several levels, including protein degradation by the proteasome, transcription, and post-transcription. The purpose of this review is to offer a concise and critical overview of the main mechanisms of NRF2 regulation and their actual or potential use as targets for the treatment of neurodegenerative diseases.
View Article and Find Full Text PDFHistorically, the use of mechanochemical methods in synthesis has been almost negligible, but their perception by the synthetic community has changed in recent years and they are on their way to becoming mainstream. However, the hybridization of mechanochemical synthesis with methodologies designed to increase synthetic efficiency by allowing the generation of several bonds in a single operation has taken off only recently, but it already constitutes a very promising approach to sustainable chemistry. In this context, we provide in this Perspective a critical summary and discussion of the main known synthetic methods based on mechanochemical multicomponent reactions.
View Article and Find Full Text PDFThe pseudo-five-component reaction between β-dicarbonyl compounds (2 molecules), diamines and α-iodoketones (2 molecules), prepared in situ from aryl ketones, was performed efficiently under mechanochemical conditions involving high-speed vibration milling with a single zirconium oxide ball. This reaction afforded symmetrical frameworks containing two pyrrole or fused pyrrole units joined by a spacer, which are of interest in the exploration of chemical space for drug discovery purposes. The method was also extended to the synthesis of one compound containing three identical pyrrole fragments via a pseudo-seven-component reaction.
View Article and Find Full Text PDFThe combination of a three-component, solvent-free pyrrole synthesis performed under mechanochemical conditions with a TMSOTf-catalyzed oxonium-mediated cyclization gave general access to pyrrolo[2,1-a]isoquinoline derivatives under very mild conditions. The structural diversity generated by this method was extended by the preparation of six additional unusual polyheterocyclic frameworks.
View Article and Find Full Text PDFBMC Cancer
February 2015
Background: Perioperatory chemoradiotherapy (CRT) improves local control and survival in patients with locally advanced rectal cancer (LARC). The objective of the current study was to evaluate the addition of bevacizumab (BEV) to preoperative capecitabine (CAP)-based CRT in LARC, and to explore biomarkers for downstaging.
Methods: Patients (pts) were randomized to receive 5 weeks of radiotherapy 45 Gy/25 fractions with concurrent CAP 825 mg/m(2) twice daily 5 days per week and BEV 5 mg/kg once every 2 weeks (3 doses) (arm A), or the same schedule without BEV (arm B).
Pyrrole is one of the most important one-ring heterocycles. The ready availability of suitably substituted and functionalized pyrrole derivatives is essential for the progress of many branches of science, including biology and materials science. Access to this key heterocycle by multicomponent routes is particularly attractive in terms of synthetic efficiency, and also from the environmental point of view.
View Article and Find Full Text PDFA sequential multicomponent process involving the high-speed vibration milling of ketones with N-iodosuccinimide and p-toluenesulfonic acid, followed by addition of a mixture of primary amines, β-dicarbonyl compounds, cerium(IV) ammonium nitrate and silver nitrate afforded polysubstituted, functionalized pyrroles. This one-pot, solid-state process can be considered as the coupling of an α-iodoketone preparation with a general version of the classical Hantzsch pyrrole synthesis.
View Article and Find Full Text PDFThe CAN-catalyzed reaction between 3,5-disubstituted anilines, vinyl ethers and aromatic aldehydes leads to trans-2-aryl-4-arylaminotetrahydroquinolines, in an AA'BC sequential multicomponent transformation related to the Povarov reaction that was also extended to the use of a second aniline as the C-4 substituent. The unusual trans stereochemistry was explained by stabilization of the corresponding intermediate by intramolecular hydrogen bonding. The presence of the 4-anilino substituent allowed adapting the method to the synthesis of 4-unsubstituted 2-arylquinolines, by treatment of the crude product from the MCR with FeCl(3) in methanol.
View Article and Find Full Text PDFThe indium trichloride-catalyzed reaction between aromatic imines and α,β-unsaturated N,N-dimethylhydrazones in acetonitrile afforded 1,2,3,4-tetrahydroquinolines bearing a hydrazone function at C4 through a one-pot diastereoselective domino process that involves the formation of two C-C bonds and the controlled generation of two stereocenters, one of which is quaternary. This reaction constitutes the first example of an α,β-unsaturated dimethylhydrazone that behaves as a dienophile in a hetero Diels-Alder reaction. The related reaction between anilines, aromatic aldehydes, and methacrolein dimethylhydrazone in CHCl(3) with BF(3)⋅Et(2)O as catalyst afforded polysubstituted 1,2,3,3a,4,8b-hexahydropyrrolo[3,2-b]indoles as major products through a fully diastereoselective ABB'C four-component domino process that generates two cycles, three stereocenters, two C-C bonds, and two C-N bonds in a single operation.
View Article and Find Full Text PDFMulticomponent reactions are one of the most interesting concepts in modern synthetic chemistry and, as shown in this critical review, they provide an attractive entry into pyrrole derivatives, which are very important heterocycles from many points of view including medicinal and pharmaceutical chemistry and materials science (97 references).
View Article and Find Full Text PDFThe reaction of vinyl Grignard reagents with o-methoxynitroarenes containing an electron-releasing substituent para to the nitro group proceeds through a pathway that is different from the initially expected Bartoli indole synthesis. Thus, instead of giving fused indole derivatives, these reactions provide a very mild and efficient new procedure for the synthesis of synthetically relevant aromatic systems containing an o-nitrovinyl moiety, such as 5-nitro-4-vinylindoles, 6-nitro-7-vinylindoles, 6-nitro-5-vinyl-2(1H)quinolinones, and 4-nitro-3-vinylanilines.
View Article and Find Full Text PDF