Background: The compatible solute trehalose is involved in the osmostress response of Rhizobium etli, the microsymbiont of Phaseolus vulgaris. In this work, we reconstructed trehalose metabolism in R. etli, and investigated its role in cellular adaptation and survival to heat and desiccation stress under free living conditions.
View Article and Find Full Text PDFThe disaccharide trehalose is considered as a universal stress molecule, protecting cells and biomolecules from injuries imposed by high osmolarity, heat, oxidation, desiccation and freezing. Chromohalobacter salexigens is a halophilic and extremely halotolerant γ-proteobacterium of the family Halomonadaceae. In this work, we have investigated the role of trehalose as a protectant against salinity, temperature and desiccation in C.
View Article and Find Full Text PDFHalophilic gammaproteobacteria of the family Halomonadaceae (including the genera Aidingimonas, Carnimonas, Chromohalobacter, Cobetia, Halomonas, Halotalea, Kushneria, Modicisalibacter, Salinicola, and Zymobacter) have current and promising applications in biotechnology mainly as a source of compatible solutes (powerful stabilizers of biomolecules and cells, with exciting potentialities in biomedicine), salt-tolerant enzymes, biosurfactants, and extracellular polysaccharides, among other products. In addition, they display a number of advantages to be used as cell factories, alternative to conventional prokaryotic hosts like Escherichia coli or Bacillus, for the production of recombinant proteins: (1) their high salt tolerance decreases to a minimum the necessity for aseptic conditions, resulting in cost-reducing conditions, (2) they are very easy to grow and maintain in the laboratory, and their nutritional requirements are simple, and (3) the majority can use a large range of compounds as a sole carbon and energy source. In the last 15 years, the efforts of our group and others have made possible the genetic manipulation of this bacterial group.
View Article and Find Full Text PDFBMC Microbiol
October 2010
Background: Osmosensing and associated signal transduction pathways have not yet been described in obligately halophilic bacteria. Chromohalobacter salexigens is a halophilic bacterium with a broad range of salt tolerance. In response to osmotic stress, it synthesizes and accumulates large amounts of the compatible solutes ectoine and hydroxyectoine.
View Article and Find Full Text PDFBackground: Associated with appropriate crop and soil management, inoculation of legumes with microbial biofertilizers can improve food legume yield and soil fertility and reduce pollution by inorganic fertilizers. Rhizospheric bacteria are subjected to osmotic stress imposed by drought and/or NaCl, two abiotic constraints frequently found in semi-arid lands. Osmostress response in bacteria involves the accumulation of small organic compounds called compatible solutes.
View Article and Find Full Text PDFMicroorganisms produce and accumulate compatible solutes aiming at protecting themselves from environmental stresses. Among them, the wide spread in nature ectoines are receiving increasing attention by the scientific community because of their multiple applications. In fact, increasing commercial demand has led to a multiplication of efforts in order to improve processes for their production.
View Article and Find Full Text PDFChromohalobacter salexigens, a Gammaproteobacterium belonging to the family Halomonadaceae, shows a broad salinity range for growth. Osmoprotection is achieved by the accumulation of compatible solutes either by transport (betaine, choline) or synthesis (mainly ectoine and hydroxyectoine). Ectoines can play additional roles as nutrients and, in the case of hydroxyectoine, in thermotolerance.
View Article and Find Full Text PDFThe halophilic bacterium Chromohalobacter salexigens synthesizes and accumulates compatible solutes in response to salt and temperature stress. (13)C-nuclear magnetic resonance analysis of cells grown in minimal medium at the limiting temperature of 45 degrees C revealed the presence of hydroxyectoine, ectoine, glutamate, trehalose (not present in cells grown at 37 degrees C), and the ectoine precursor, Ngamma-acetyldiaminobutyric acid. High-performance liquid chromatography analyses showed that the levels of ectoine and hydroxyectoine were maximal during the stationary phase of growth.
View Article and Find Full Text PDF