3D printing has been recently recognized as one of the most promising technologies due to the multiple options to fabricate cost-effective and customizable objects. However, the necessity to substitute fossil fuels as raw materials is increasing the research on bio-based inks with recyclable and eco-friendly properties. In this work, we formulated inks for the 3D printing of ionogels and hydrogels with bleached kraft pulp dissolved in [Emim][DMP] at different concentrations (1-4 wt%).
View Article and Find Full Text PDFWood fractionation is key for the integral valorization of its three main components. In this sense, recovering the hemicellulosic fraction after the ionosolv treatment of lignocellulosic materials is one of the main drawbacks of this process. Thus, the incorporation of a previous autohydrolyisis step to recover the hemicellulosic sugars before the ionosolv treatment is an interesting approach.
View Article and Find Full Text PDFBiomass fractionation plays a major role in the search for competitive biorefineries, where the isolation and recovery of the three woody fractions is key. In this sense, we have used autohydrolyzed hemicellulose-free poplar as feedstock to compare two fractionation processes, organosolv and ionosolv, oriented to lignin recovery. The recovered lignins were then characterize by different techniques (NMR, GPC, TGA).
View Article and Find Full Text PDFCellulose ionogels have been extensively studied due to the variability of their properties and applications. The capability of trapping an ionic liquid in a biodegradable solid matrix without losing its properties makes this type of material a promising substitute for fossil fuel-derived materials. The possibility to formulate ionogels chemically or physically, to choose between different ionic liquids, cellulose types, and the possibility to add a wide range of additives, make these ionogels an adaptable material that can be modified for each target application in many fields such as medicine, energy storage, electrochemistry, etc.
View Article and Find Full Text PDFProtic ionic liquids have been proposed as effective solvents for the selective extraction of lignin from wood. In this work, the protic ionic liquid 1-methylimidazolium chloride has been used to extract lignin at different biomass loadings, temperatures, and times to understand the influence of treatment severity on the lignin dissolution mechanism. The maximum lignin recovery (82.
View Article and Find Full Text PDFNew chitosan-reinforced cellulosic bionogels were successfully formulated with different chitosan loadings (0.25, 0.5, 0.
View Article and Find Full Text PDFNovel ionogels with different cellulose contents, namely, 0.5, 1, 1.5 and 2 wt%, were formulated with cholinium lysinate (ChLys), and the rheological properties were evaluated at 3 and 7 days postgelation.
View Article and Find Full Text PDFThe rheological and thermal properties of formulated cellulosic ionogels reinforced with chitosan with 54-84% deacetylation degrees (DDs) were studied. The ionogels were stable, and the linear viscoelastic regions (LVRs) were determined. The rheological spectra of the ionogels revealed strong physical gels.
View Article and Find Full Text PDFThe extraction of hemicellulose from pine wood was studied by applying autohydrolysis treatment. A central composite experimental design was carried out using different temperatures (150-190 °C) and times (30-90 min) to select the most favorable operating conditions for maximizing the extraction of hemicellulose and minimizing its degradation. This liquid phase was analyzed by HPLC to quantify oligosaccharides, monosaccharides and degradation products.
View Article and Find Full Text PDFThe combination of autohydrolysis and ionic liquid microwave treatments of eucalyptus wood have been studied to facilitate sugar production in a subsequent enzymatic hydrolysis step. Three autohydrolysis conditions (150 °C, 175 °C and 200 °C) in combination with two ionic liquid temperatures (80 °C and 120 °C) were compared in terms of chemical composition, enzymatic digestibility and sugar production. Morphology was measured (using SEM) and the biomass surface was visualized with confocal fluorescence microscopy.
View Article and Find Full Text PDFSelf-organizing map (SOM) and learning vector quantification network (LVQ) models have been explored for the identification of edible and vegetable oils and to detect adulteration of extra virgin olive oil (EVOO) using the most common chemicals in these oils, viz. saturated fatty (mainly palmitic and stearic acids), oleic and linoleic acids. The optimization and validation processes of the models have been carried out using bibliographical sources, that is, a database for developing learning process and internal validation, and six other different databases to perform their external validation.
View Article and Find Full Text PDF