The objective of these in vitro studies was to investigate the impact of the encapsulation of three cannabis-based terpenes, namely β-myrcene (MC), β-caryophyllene (CPh), and nerolidol (NL), on their potential efficacy in pain management. Terpene-encapsulated poly(ethylene glycol)-poly(lactic-co-glycolic acid) nanoparticles (PEG-PLGA NPs) were prepared by an emulsion-solvent evaporation method. The terpene-loaded NPs were examined in HEK293 cells that express the nociceptive transient receptor potential vanilloid-1 (TRPV1), an ion channel involved in pain perception.
View Article and Find Full Text PDFΔ-tetrahydrocannabinol (Δ-THC) is known for its antitumor activity and palliative effects. However, its unfavorable physicochemical and biopharmaceutical properties, including low bioavailability, psychotropic side effects and resistance mechanisms associated to dosing make mandatory the development of successful drug delivery systems. In this work, transferring (Tf) surface-modified ΔTHC-loaded poly(lactide-co-glycolic) nanoparticles (Tf-THC-PLGA NPs) were proposed and evaluated as novel THC-based anticancer therapy.
View Article and Find Full Text PDFNeurodegenerative diseases, like Alzheimer´s and Parkinson´s disease, are a group of disorders that have in common their increasingly high prevalence along with the shortage of effective treatments. In addition, the scientific community faces the challenge of getting the drugs used in these treatments to cross the blood-brain barrier (BBB) and reach the brain in sufficient concentration to be able to exert its effect. Hence, researchers across multiple disciplines are working together in order to improve the ability of therapeutics to penetrate the BBB.
View Article and Find Full Text PDFNeuropathic pain, resistant to opiates and other drugs, is a chronic/persistent state with a complex treatment and often poor efficacy. In this scenario, cannabinoids are increasingly regarded as a genuine alternative. In this paper, and in an experimental animal model of neuropathic pain, we studied the efficacy of three kinds of PLGA nanoparticles containing synthetic cannabinoid CB13: (i) plain nanoparticles (PLGA); (ii) particles coated with PEG chains (PLGA+PEG) and (iii) particles possessing hydrophilic surfaces obtained by covalently binding PEG chains (PLGA-PEG).
View Article and Find Full Text PDFThe objective of this work is to develop a nanoplatform that can potentiate the oral administration of Δ9-tetrahidrocannabinol, a highly lipophilic active agent with very promising antiproliferative and antiemetic activities. To that aim, colloidal carriers based on the biodegradable and biocompatible poly(D,L-lactide-co-glycolide) were investigated. Such delivery systems were prepared by nanoprecipitation, and nanoparticle engineering further involved surface modification with a poly(ethylene glycol), chitosan, or poly(ethylene glycol)-chitosan shells to assure the greatest uptake by intestinal cells and to minimize protein adsorption.
View Article and Find Full Text PDFThis article aimed to produce, characterize and evaluate different surface-modified naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl)methanone (CB13) loaded poly(lactic-co-glycolic acid) nanoparticles in order to improve their oral absorption and in vivo biodistribution. Plain and surface-modified PLGA nanoparticles were successfully prepared using a nanoprecipitation method. Chitosan, Eudragit RS, lecithin and vitamin E were used as surface modifying agents.
View Article and Find Full Text PDFCB13 (1-Naphthalenyl[4-(pentyloxy)-1-naphthalenyl]methanone)-loaded poly(lactic-co-glycolic acid) nanoparticles (NPs) were produced by nanoprecipitation and tested for their in vitro release behavior and in vitro cytotoxicity assays. The effects of several formulation parameters such as polymer type, surfactant concentration, and initial drug amount were studied. NPs had a particle size 90-300 nm in diameter.
View Article and Find Full Text PDFIn the present work, a promising formulation of an inhaled powder based on tobramycin-loaded microparticles has been reported. Biodegradable microparticles with controlled diameters in the range of 1-5 μm and narrow size distribution were synthesized by Flow Focusing® technology. Particles production was planned and optimized with the aid of a well-established mathematic model.
View Article and Find Full Text PDFThis work is focused on the analysis of the effect of basic physicochemical aspects (surface thermodynamic and electrokinetic characteristics) on the stability and redispersibility properties of mebendazole aqueous suspensions. To our knowledge, previous investigations on the formulation of mebendazole suspensions have been not devoted to the elucidation of the colloidal behavior of this benzimidazole carbamate. A deep thermodynamic and electrokinetic characterization, considering the effect of both pH and ionic strength, was carried out with that purpose.
View Article and Find Full Text PDFAn in vivo preclinical study has been made of the oral absorption of morphine (CAS 57-27-2) from a new sustained release formulation (morphine-Eudragit L complex, MEC), which had shown good sustained release properties in in vitro dissolution studies. The absorption of morphine from capsules filled with morphine hydrochloride trihydrate (MHT) or MEC was compared in fasted and fed dogs. Mean plasma morphine concentrations obtained after administration of MHT and MEC to fasted dogs were similar, and no statistically significant differences were found in the pharmacokinetic parameters of morphine (Cmax, Tmax and area under the plasma morphine concentration versus time curve from time zero to the last time with a detectable concentration of morphine).
View Article and Find Full Text PDFThe purpose of this research was to perform a granulometrical and flow properties study of a morphine polymeric complex and determine the influence of 3 variables--particle size of complex, pH value, and ionic strength of the dissolution medium--on the dissolution behavior. The morphine-Eudragit L complex was produced in aqueous medium from morphine hydrochloride saturated solution and Eudragit L 30D diluted until 12% wt/vol and partially neutralized (40%). To determine the rheological behavior of the complex, several rheological tests were developed: bulk and tapped densities, Hausner ratio, angle of repose, and flow rate.
View Article and Find Full Text PDFStatistical experimental design was applied to evaluate the influence of some process and formulation variables and possible interactions among such variables, on didanosine release from directly-compressed matrix tablets based on blends of two insoluble polymers, Eudragit RS-PM and Ethocel 100, with the final goal of drug release behavior optimization. The considered responses were the percent of drug released at three determined times, the dissolution efficiency at 6 h and the time to dissolve 10% of drug. Four independent variables were considered: tablet compression force, ratio between the polymers and their particle size, and drug content.
View Article and Find Full Text PDFDidanosine, a nucleoside analog used in the treatment of acquired immuno deficiency syndrome (AIDS), has been incorporated into directly compressed monolythic matrices whose excipients were mixtures at different ratios of a methacrylic resin (Eudragit RSPM) and an ethylcellulose (Ethocel 100), both water-insoluble and pH-independent polymers. Technological characterization (drug particle morphology, mean weight, diameter, thickness and hardness of tablets) was carried out and in vitro drug release behaviour was measured using the USP basket apparatus. The effect of varying the Eudragit-Ethocel ratio, as well as the drug-polymeric matrix ratio, was evaluated.
View Article and Find Full Text PDF