Publications by authors named "Mercedes Dosil"

VAV2 is an activator of RHO GTPases that promotes and maintains regenerative proliferation-like states in normal keratinocytes and oral squamous cell carcinoma (OSCC) cells. Here, we demonstrate that VAV2 also regulates ribosome biogenesis in those cells, a program associated with poor prognosis of human papilloma virus-negative (HPV) OSCC patients. Mechanistically, VAV2 regulates this process in a catalysis-dependent manner using a conserved pathway comprising the RAC1 and RHOA GTPases, the PAK and ROCK family kinases, and the c-MYC and YAP/TAZ transcription factors.

View Article and Find Full Text PDF

The R-RAS2 GTP hydrolase (GTPase) (also known as TC21) has been traditionally considered quite similar to classical RAS proteins at the regulatory and signaling levels. Recently, a long-tail hotspot mutation targeting the R-RAS2/TC21 Gln residue (Q72L) was identified as a potent oncogenic driver. Additional point mutations were also found in other tumors at low frequencies.

View Article and Find Full Text PDF
Article Synopsis
  • Recent findings show that mutations in the VAV1 gene are linked to peripheral T cell lymphoma and non-small-cell lung cancer (NSCLC).
  • Researchers created a gene-edited mouse model to study the impact of a specific VAV1 mutation, which did not cause cancer alone but led to T cell lymphoma when combined with the loss of the Trp53 gene.
  • The study revealed that VAV1 mutations influence tumor development in specific cell types and interact with other mutations, highlighting the complexity of cancer mechanisms.
View Article and Find Full Text PDF

It is known that Rho GTPases control different aspects of the biology of skin stem cells (SSCs). However, little information is available on the role of their upstream regulators under normal and tumorigenic conditions in this process. To address this issue, we have used here mouse models in which the activity of guanosine nucleotide exchange factors of the Vav subfamily has been manipulated using both gain- and loss-of-function strategies.

View Article and Find Full Text PDF

A missense change in RRAS2 (Gln to Leu), analogous to the Gln-to-Leu mutation of RAS oncoproteins, has been identified as a long-tail hotspot mutation in cancer and Noonan syndrome. However, the relevance of this mutation for in vivo tumorigenesis remains understudied. Here we show, using an inducible knockin mouse model, that R-Ras2 triggers rapid development of a wide spectrum of tumors when somatically expressed in adult tissues.

View Article and Find Full Text PDF

Vav proteins act as tyrosine phosphorylation-regulated guanosine nucleotide exchange factors for Rho GTPases and as molecular scaffolds. In mammals, this family of signaling proteins is composed of three members (Vav1, Vav2, Vav3) that work downstream of protein tyrosine kinases in a wide variety of cellular processes. Recent work with genetically modified mouse models has revealed that these proteins play key signaling roles in vascular smooth and skeletal muscle cells, specific neuronal subtypes, and glia cells.

View Article and Find Full Text PDF

Biochemical studies of the human ribosome synthesis pathway have been hindered by technical difficulties in obtaining intact preribosomal complexes from internal regions of the nucleolus. Here we provide a detailed description of an extraction method that enables efficient detection, isolation, and characterization of nucleolar preribosomes containing large pre-rRNA species. The three-step Preribosome Sequential Extraction (PSE) protocol preserves the integrity of early preribosomal complexes and yields preparations amenable to biochemical analyses from low amounts of starting material.

View Article and Find Full Text PDF

The current paradigm holds that the inhibition of Rho guanosine nucleotide exchange factors (GEFs), the enzymes that stimulate Rho GTPases, can be a valuable therapeutic strategy to treat Rho-dependent tumors. However, formal validation of this idea using in vivo models is still missing. In this context, it is worth remembering that many Rho GEFs can mediate both catalysis-dependent and independent responses, thus raising the possibility that the inhibition of their catalytic activities might not be sufficient per se to block tumorigenic processes.

View Article and Find Full Text PDF

Technical problems intrinsic to the purification of preribosome intermediates have limited our understanding of ribosome biosynthesis in humans. Addressing this issue is important given the implication of this biological process in human disease. Here we report a preribosome purification and tagging strategy that overcomes some of the existing technical difficulties.

View Article and Find Full Text PDF

In , more than 250 -acting factors are involved in the maturation of 40S and 60S ribosomal subunits. The expression of most of these factors is transcriptionally coregulated to ensure correct ribosome production under a wide variety of environmental and intracellular conditions. Here, we identified the essential nucleolar Pol5 protein as a novel -acting factor required for the synthesis of 60S ribosomal subunits.

View Article and Find Full Text PDF

The bidirectional regulation of epithelial-mesenchymal transitions (EMT) is key in tumorigenesis. Rho GTPases regulate this process via canonical pathways that impinge on the stability of cell-to-cell contacts, cytoskeletal dynamics, and cell invasiveness. Here, we report that the Rho GTPase activators Vav2 and Vav3 utilize a new Rac1-dependent and miR-200c-dependent mechanism that maintains the epithelial state by limiting the abundance of the Zeb2 transcriptional repressor in breast cancer cells.

View Article and Find Full Text PDF

Increasing evidence suggests that alterations in ribosome biogenesis (RiBi) confer competitive advantages to cancer cells. This has led to the discovery of regulatory layers mediated by signaling proteins, oncoproteins, and tumor suppressors whose deregulation leads to increased RiBi rates in cancer cells. In addition to boosting protein synthesis, these alterations probably contribute to shape the protumorigenic proteome of cancer cells.

View Article and Find Full Text PDF

contains one nucleolus that remains intact in the mother-cell side of the nucleus throughout most of mitosis. Based on this, it is assumed that the bulk of ribosome production during cell division occurs in the mother cell. Here, we show that the ribosome synthesis machinery localizes not only in the nucleolus but also at a center that is present in the bud side of the nucleus after the initiation of mitosis.

View Article and Find Full Text PDF

During the biogenesis of small ribosomal subunits in eukaryotes, the pre-40S particles formed in the nucleolus are rapidly transported to the cytoplasm. The mechanisms underlying the nuclear export of these particles and its coordination with other biogenesis steps are mostly unknown. Here we show that yeast Rrp12 is required for the exit of pre-40S particles to the cytoplasm and for proper maturation dynamics of upstream 90S pre-ribosomes.

View Article and Find Full Text PDF

R-Ras2 is a transforming GTPase that shares downstream effectors with Ras subfamily proteins. However, little information exists about the function of this protein in tumorigenesis and its signalling overlap with classical Ras GTPases. Here we show, by combining loss- and gain-of-function studies in breast cancer cells, mammary epithelial cells and mouse models, that endogenous R-Ras2 has a role in both primary breast tumorigenesis and the late metastatic steps of cancer cells in the lung parenchyma.

View Article and Find Full Text PDF

The 90S pre-ribosome, also known as the small subunit (SSU) processome, is a large multisubunit particle required for the production of the 18S rRNA from a pre-rRNA precursor. Recently, it has been shown that the formation of this particle entails the initial association of the tUTP subunit with the nascent pre-RNA and, subsequently, the binding of Rrp5/UTP-C and U3 snoRNP/UTP-B subunits in two independent assembly branches. However, the mode of assembly of other 90S pre-ribosome components remains obscure as yet.

View Article and Find Full Text PDF

Given the high metabolic cost required to generate ribosomes, it has been assumed that proteins involved in ribosome synthesis might establish functional cross talk with other intracellular processes to efficiently couple ribosome production and cell growth. However, such interconnections have remained elusive due to the difficulty in separating the intra- and extraribosomal roles of ribosome biogenesis factors. Using a yeast functional screen, I have discovered that Rrp12, a conserved protein involved in ribosome maturation and export, plays roles in the cell cycle and the DNA damage response.

View Article and Find Full Text PDF

Mating pheromone receptors of the yeast Saccharomyces cerevisiae are useful models for the study of G protein-coupled receptors. The mating pheromone receptors, Ste2 and Ste3, are not essential for viability so they can be readily targeted for analysis by a variety of genetic approaches. This chapter will describe methods for identification of two kinds of mutants that have been very informative about the mechanisms of receptor signaling: constitutively active mutants and dominant-negative mutants.

View Article and Find Full Text PDF

The 90S preribosomal particle is required for the production of the 18S rRNA from a pre-rRNA precursor. Despite the identification of the protein components of this particle, its mechanism of assembly and structural design remain unknown. In this work, we have combined biochemical studies, proteomic techniques, and bioinformatic analyses to shed light into the rules of assembly of the yeast 90S preribosome.

View Article and Find Full Text PDF

Rho GTPases control many facets of cell polarity and migration; namely, the reorganization of the cellular cytoskeleton to extracellular stimuli. Rho GTPases are activated by GTP exchange factors (GEFs), which induce guanosine diphosphate (GDP) release and the stabilization of the nucleotide-free state. Thus, the role of GEFs in the regulation of the cellular response to extracellular cues during cell migration is a critical step of this process.

View Article and Find Full Text PDF

Here we report the functional characterization of Pwp2, an evolutionary conserved component of the 90 S pre-ribosome. Conditional depletion of the Pwp2 protein in yeast specifically impairs pre-rRNA proccessing at sites A(0), A(1), and A(2), leading to a strong decrease in 18 S rRNA and 40 S ribosomal subunit levels. Pre-ribosomal particle sedimentation analysis indicated that these defects are caused by a block in the formation of 90 S pre-ribosomes.

View Article and Find Full Text PDF

We have used an extensive mutagenesis approach to study the specific role of the eight structural domains of Vav during both the activation and signaling steps of this Rac1 exchange factor. Our results indicate that several Vav domains (Dbl homology, pleckstrin homology, and zinc finger) are essential for all the biological activities tested, whereas others are required for discrete, cell type-specific biological effects. Interestingly, we have found that Vav domains have no unique functions.

View Article and Find Full Text PDF