This study examines Hg distribution in stream sediments impacted by hard coal mining in the Upper Silesian Coal Basin (USCB), Czechia. By means of a comparative analysis, geological samples and samples from stream sediments were used to carry out a comprehensive assessment of the effects of anthropogenic activities on Hg distribution and speciation. Total Hg (THg), total organic and inorganic carbons (TOC and TIC), and total sulphur (TS) were measured in the samples to reveal a potential relationship.
View Article and Find Full Text PDFElemental mercury (Hg) is a highly hazardous pollutant of coal combustion. The low-temperature SCR catalyst of MnO/TiO can efficiently remove Hg in coal-burning flue gas. Considering its sulfur sensitivity, the effect of SO on the catalytic efficiency of MnO/TiO and Fe modified MnO/TiO for Hg removal was investigated comprehensively for the first time.
View Article and Find Full Text PDFThe work presented here provides a complex environmental impact of sediments in vicinity to the area of the former Lazy coal mine site in the Upper Silesian Coal Basin (Czech Republic). The main aim of this work has been to determine the degree of contamination, to describe the organic matter, and to carry out sorption isotherms to see the size and distribution of pores in the monitored sediments that are the crucial parameters to assumption of removal mechanisms of elements carried in mine water. The results show that the greatest enrichment of Mn, Sr, Ba, and was in sediments of the first tens of meters from the mine water discharge sediments.
View Article and Find Full Text PDFIndustrial expansion in the North Bohemian Coal District over the past decades has had an adverse effect not only on stream sediments but also on the freshwater system. So far mercury occurrence has not been properly investigated in the area. In response to this situation, the present study applies mercury quantification and speciation in order to predict the possible mobility of mercury.
View Article and Find Full Text PDFThis study evaluates some of the variables that may influence mercury retention in wet flue gas desulfurization (WFGD) plants, focusing on oxy-coal combustion processes and differences when compared with atmospheres enriched in N2. The main drawback of using WFGD for mercury capture is the possibility of unwanted reduction of dissolved Hg(2+), leading to the re-emission of insoluble elemental mercury (Hg(0)), which decreases efficiency. To acquire a better understanding of the mercury re-emission reactions in WFGD systems, this work analyses different variables that influence the behavior of mercury in slurries obtained from two limestones, under an oxy-combustion atmosphere.
View Article and Find Full Text PDFThis paper evaluates the influence of the main constituents of flue gases from coal combustion (CO2, O2, N2 and water vapor), in air and oxy-fuel combustion conditions on the re-emission of Hg(0) in wet scrubbers. It was observed that the concentration of water vapor does not affect the re-emission of mercury, whereas O2 and CO2 have a notable influence. High concentrations of O2 in the flue gas prevent the re-emission of Hg(0) due to the reaction of oxygen with the metals present in low oxidation states.
View Article and Find Full Text PDFThis study evaluates the effect of the gases present in a typical oxy-coal combustion atmosphere on mercury speciation and compares it with the mercury speciation produced in conventional air combustion atmospheres. The work was performed at laboratory scale at 150 °C. It was found that the minor constituents (SO2, NOx, and HCl) significantly modify the percentages of Hg(2+) in the gas.
View Article and Find Full Text PDFThis work demonstrates that regenerable sorbents containing nano-particles of gold dispersed on an activated carbon are efficient and long-life materials for capturing mercury species from coal combustion flue gases. These sorbents can be used in such a way that the high investment entailed in their preparation will be compensated for by the recovery of all valuable materials. The characteristics of the support and dispersion of gold in the carbon surface influence the efficiency and lifetime of the sorbents.
View Article and Find Full Text PDFElemental mercury in flue gases from coal combustion is difficult to control. However, oxidized mercury species are soluble in water and can be removed with a high degree of efficiency in wet flue gas desulphurization (WFGD) systems operating in coal combustion plants, provided that no re-emissions occur. In this article the mechanisms affecting the re-emission of oxidized mercury species in WFGD conditions via sulphite ions are discussed.
View Article and Find Full Text PDFThis work evaluates the influence of the effect of the properties of limestones on their reactivity and the re-emission of mercury under typical wet scrubber conditions. The influence of the composition, particle size, and porosity of limestones on their reactivity and the effect of sorbent concentration, pH, redox potential, and the sulphite and iron content of the slurry on Hg(0) re-emission was assessed. A small particle size, a high porosity and a low magnesium content increased the high reactivity of the limestones.
View Article and Find Full Text PDFA full-scale field study was carried out at two Spanish coal-fired power plants equipped with electrostatic precipitator (ESP) and wet flue gas desulfurisation (FGD) systems to investigate the distribution of boron in coals, solid by-products, wastewater streams and flue gases. The results were obtained from the simultaneous sampling of solid, liquid and gaseous streams and their subsequent analysis in two different laboratories for purposes of comparison. Although the final aim of this study was to evaluate the partitioning of boron in a (co-)combustion power plant, special attention was paid to the analytical procedure for boron determination.
View Article and Find Full Text PDFThis study evaluates the behaviour of total Cr and Cr (VI) during coal combustion in two Spanish power stations. The content and distribution of Cr in the feed coal and combustion wastes was determined and the Cr contents were normalized using enrichment factor indexes. The speciation of Cr in the fly ash fractions from the different hoppers of the electrostatic precipitators was established and the possibility that the Cr (VI) might lixiviate when ashes are disposed of at landfill sites was assessed.
View Article and Find Full Text PDFArsenic and selenium compounds may be emitted to the environment during coal conversion processes, although some compounds are retained in the fly ashes, in different proportions depending on the characteristics of the ashes and process conditions. The possibility of optimizing the conditions to achieve better trace element retention appears to be an attractive, economical option for reducing toxic emissions. This approach requires a good knowledge of fly ash characteristics and a thorough understanding of the capture mechanism involved in the retention.
View Article and Find Full Text PDFA plan to control mercury emissions to the atmosphere and to establish mercury emission limits has recently been elaborated by the European Commission, making it necessary to devise an efficient and cost effective mercury removal technology. Towards this end wet flue gas desulfurization units appear as a promising option for multi-pollutant control. However, more investigation on mercury removal and a greater mercury removal efficiency are required to achieve this objective.
View Article and Find Full Text PDFEnviron Sci Technol
February 2004
Volatile arsenic and selenium compounds present in coals may cause environmental problems during coal combustion and gasification. A possible way to avoid such problems may be the use of solid sorbents capable of retaining these elements from flue gases in gas cleaning systems. Lime and limestone are materials that are extensively employed for the capture of sulfur during coal processing.
View Article and Find Full Text PDF