Publications by authors named "Mercedes Camalli"

In this study the modulation of the pharmacological profile from agonist to antagonist was successfully obtained by replacing the methyl group in position 6 of the 1,4-dioxane scaffold of the potent M(2)/M(3) muscarinic agonist 1 with bulkier groups. In particular, the 6,6-diphenyl substitution provided the potent M(3) preferring antagonist (±)-17, which in in vivo study proved to be effective in reducing the volume-induced contractions of rat urinary bladder and was devoid of cardiovascular effects.

View Article and Find Full Text PDF

The shaping of a calix[7]arene macrocycle into cone-like structure 3, through exhaustive alkylation of doubly bridged calix[7]arene derivative 2 with bulky groups, has been investigated. Conformational details about the structure adopted by calix[7]arene derivative 3 in solution have been obtained by using chemical shift surface maps, as previously reported by our group. Thus, chemical shift contour plots indicated that 3 adopted a cone-shaped structure in solution analogous to that adopted by the known p-tert-butylcalix[7]arene heptacarboxylic acid derivative 4.

View Article and Find Full Text PDF

A novel ruthenium(II) compound, trans-cis-cis-[Ru(II)Cl(2)(DMSO)(2)(2-amino-5-methyl-thiazole)(2)], (I), PMRu52 hereafter, that may be obtained from the previously described (cis and trans)-[Ru(II)Cl(2)(DMSO)(4)] complexes, was designed, synthesized and characterised. The single crystal X-ray structure shows a roughly regular octahedral environment for the ruthenium(II) center with the two chloride ligands in trans and the other two pairs of identical ligands in cis. The behaviour of PMRu52 in phosphate buffer, at pH=7.

View Article and Find Full Text PDF

Chiral 2-(sec-butylthio)-6-[1-(2,6-dichlorophenyl)propyl]-5-methylpyrimidin-4(3H)-one (compound 1) was synthesized to serve as a model compound for structural elucidation of novel S-DABO (dihydroalkoxybenzyloxopyrimidine) derivatives endowed with potential HIV-1 reverse transcriptase inhibitory activity. Stereochemical characterization of four stereoisomers of 1 was achieved by an experimental approach based on the following steps: (a) direct HPLC enantio- and diastereoseparation at semipreparative scale; (b) determination of elution order of stereomeric mixture by using chiroptical detection (polarimeter or circular dichroism (CD)); (c) X-ray crystallography of two diastereoisomers isolated at semipreparative scale. The CD analysis of 1 and its two analogues (compounds 2 and 3), both having a single stereogenic center located in two different alkyl side chains of the dihydropyrimidinone structure, was carried out.

View Article and Find Full Text PDF

A novel "Keppler type" ruthenium(III) compound trans-[bis(2-amino 5-methylthiazole)tetrachlororuthenate(III)] 1, of potential interest as an anticancer agent, was designed, synthesized, and characterized. Its interactions with various proteins were analyzed, including the selenoenzyme thioredoxin reductase, an emerging target for anticancer metallodrugs. The selective inhibition of the cytosolic form of this selenoenzyme was documented, this being the first report of significant thioredoxin reductase inhibition by a ruthenium compound.

View Article and Find Full Text PDF

We have synthesized a series of 18 1,5- and 2,5-disubstituted carbamoyl tetrazoles, including LY2183240 (1) and LY2318912 (7), two compounds previously described as potent inhibitors of the cellular uptake of the endocannabinoid anandamide, and their regioisomers 2 and 8. We confirm that compound 1 is a potent inhibitor of both the cellular uptake and, like the other new compounds synthesized here, the enzymatic hydrolysis of anandamide. With the exception of 9, 12, 15, and the 2,5-regioisomer of LY2183240 2, the other compounds were all found to be weakly active or inactive on anandamide uptake.

View Article and Find Full Text PDF

Keppler-type ruthenium(III) complexes exhibit promising antitumor properties. We report here a study of 2-aminothiazolium[trans-tetrachlorobis(2-aminothiazole)ruthenate(III)], both in the solid state and in solution. The crystal structure has been solved and found to exhibit classical features.

View Article and Find Full Text PDF

New copper(I) complexes have been synthesised from the reaction of CuCl with potassium hydrotris(4-bromo-1H-pyrazol-1-yl)borate, KTp4Br or lithium bis(3,5-dimethylpyrazol-1-yl)acetate, Li[L2CO2] ligands and 4- or 2-(diphenylphosphane)benzoic acid or tris(m-sulfonatophenyl)posphine trisodium salt (TPPTS) coligands. The complexes obtained have been characterized by elemental analyses and FT-IR in the solid state, and by NMR (1H and 31P[1H]) and electrospray mass spectrometry (ESI-MS) in solution. Single crystal structural characterisation was undertaken for the [Cu[PPh2(4-C6H4COOH)](Tp4Br)] derivative, an interesting dimeric supramolecular assembly.

View Article and Find Full Text PDF

Two ruthenium(III) complexes bearing the thiazole ligand, namely, thiazolium (bisthiazole) tetrachlororuthenate (I, TzICR) and thiazolium (thiazole, DMSO) tetrachlororuthenate (II, TzNAMI) were prepared and characterized. The crystal structures of both complexes were solved by X-ray diffraction methods and found to match closely those of the corresponding imidazole complexes. The behavior in aqueous solution of bothTzICR and TzNAMI was analyzed spectroscopically.

View Article and Find Full Text PDF

A novel dinuclear platinum(II) complex, [Pt(2)-N,N'-bis(2-dimethylaminoethyl oxamide)Cl(4)], showing peculiar structural features, has been prepared and characterized. X-ray diffraction data reveal that the two platinum ions are simultaneously bound to the N,N'-bis(2-dimethylaminoethyl) oxamide ligand, on opposite sides. The coordination environment of both platinum centers is square planar, with identical NOCl(2) donor sets.

View Article and Find Full Text PDF