Publications by authors named "Merce Pacios"

The thermoelectric performance of nanostructured low dimensional silicon and silicon-germanium has been functionally compared device-wise. The arrays of nanowires of both materials, grown by a VLS-CVD (Vapor-Liquid-Solid Chemical Vapor Deposition) method, have been monolithically integrated in a silicon micromachined structure in order to exploit the improved thermoelectric properties of nanostructured silicon-based materials. The device architecture helps to translate a vertically occurring temperature gradient into a lateral temperature difference across the nanowires.

View Article and Find Full Text PDF

In the present work, we report a solution-based strategy to produce crystallographically textured SnSe bulk nanomaterials and printed layers with optimized thermoelectric performance in the direction normal to the substrate. Our strategy is based on the formulation of a molecular precursor that can be continuously decomposed to produce a SnSe powder or printed into predefined patterns. The precursor formulation and decomposition conditions are optimized to produce pure phase 2D SnSe nanoplates.

View Article and Find Full Text PDF

Large amounts of waste heat generated in our fossil-fuel based economy can be converted into useful electric power by using thermoelectric generators. However, the low-efficiency, scarcity, high-cost and poor production scalability of conventional thermoelectric materials are hindering their mass deployment. Nanoengineering has proven to be an excellent approach for enhancing thermoelectric properties of abundant and cheap materials such as silicon.

View Article and Find Full Text PDF

There have been many successful attempts to grow high-quality large-area graphene on flat substrates. Doing so at the nanoscale has thus far been plagued by significant scalability problems, particularly because of the need for delicate transfer processes onto predefined features, which are necessarily low-yield processes and which can introduce undesirable residues. Herein we describe a highly scalable, clean and effective, in-situ method that uses thin film deposition techniques to directly grow on a continuous basis ultrathin graphite (uG) on uneven nanoscale surfaces.

View Article and Find Full Text PDF

Growing monolayer MoS2 films that are continuous with large domain sizes by chemical vapor deposition is one of the major challenges in 2D materials research at the moment. Here, we explore how atmospheric pressure CVD can be used to grow centimeter scale continuous films of monolayer MoS2 films directly on Si substrates with an oxide layer whilst also obtaining large domain sizes exceeding 20 μm within the films. This is achieved by orientating the growth substrate in a vertical position to improve the uniformity of precursor feed-stock compared to horizontally orientated growth substrates.

View Article and Find Full Text PDF

We study how grain boundaries (GB) in chemical vapor deposition (CVD) grown monolayer WS2 influence the electroluminescence (EL) behavior in lateral source-drain devices under bias. Real time imaging of the WS2 EL shows arcing between the electrodes when probing across a GB, which then localizes at the GB region as it erodes under high bias conditions. In contrast, single crystal WS2 domains showed no signs of arcing or localized EL.

View Article and Find Full Text PDF

Synthetic 2D crystal films grown by chemical vapor deposition are typically polycrystalline, and determining grain size within domains and continuous films is crucial for determining their structure. Here we show that grain boundaries in the 2D transition metal dichalcogenide WS2, grown by CVD, can be preferentially oxidized by controlled heating in air. Under our developed conditions, preferential degradation at the grain boundaries causes an increase in their physical size due to oxidation.

View Article and Find Full Text PDF

The combination of optimized and passivated Field Effect Transistors (FETs) based on carbon nanotubes (CNTs) together with the appropriate choice and immobilization strategy of aptamer receptors and buffer concentration have allowed the highly sensitive and real time biorecognition of proteins in a liquid-gated configuration. Specifically we have followed the biorecognition process of thrombin by its specific aptamer. The aptamer modified device is sensitive enough to capture a change in the electronic detection mechanism, one operating at low protein concentrations and the other in a higher target concentration range.

View Article and Find Full Text PDF

Here, we report the application of a label-free electrochemical aptasensor based on a graphite-epoxy composite electrode for the detection of thrombin; in this work, aptamers were immobilized onto the electrodes surface using wet physical adsorption. The detection principle is based on the changes of the interfacial properties of the electrode; these were probed in the presence of the reversible redox couple [Fe(CN)(6)](3-)/[Fe(CN)(6)](4-) using impedance measurements. The electrode surface was partially blocked due to formation of aptamer-thrombin complex, resulting in an increase of the interfacial electron-transfer resistance detected by Electrochemical Impedance Spectroscopy (EIS).

View Article and Find Full Text PDF