Publications by authors named "Merav Braitbard"

Cdc48 (VCP/p97) is a major AAA-ATPase involved in protein quality control, along with its canonical cofactors Ufd1 and Npl4 (UN). Here, we present novel structural insights into the interactions within the Cdc48-Npl4-Ufd1 ternary complex. Using integrative modeling, we combine subunit structures with crosslinking mass spectrometry (XL-MS) to map the interaction between Npl4 and Ufd1, alone and in complex with Cdc48.

View Article and Find Full Text PDF

Atomic structures of several proteins from the coronavirus family are still partial or unavailable. A possible reason for this gap is the instability of these proteins outside of the cellular context, thereby prompting the use of in-cell approaches. In situ cross-linking and mass spectrometry (in situ CLMS) can provide information on the structures of such proteins as they occur in the intact cell.

View Article and Find Full Text PDF

Respiratory electron transport complexes are organized as individual entities or combined as large supercomplexes (SC). Gram-negative bacteria deploy a mitochondrial-like cytochrome (cyt) bc (Complex III, CIII), and may have specific cbb-type cyt c oxidases (Complex IV, CIV) instead of the canonical aa-type CIV. Electron transfer between these complexes is mediated by soluble (c) and membrane-anchored (c) cyts.

View Article and Find Full Text PDF

Collagen triple helix repeat containing protein 1 (Cthrc1) is a secreted glycoprotein reported to regulate collagen deposition and to be linked to the Transforming growth factor β/Bone morphogenetic protein and the Wnt/planar cell polarity pathways. It was first identified as being induced upon injury to rat arteries and was found to be highly expressed in multiple human cancer types. Here, we explore the phylogenetic and evolutionary trends of this metazoan gene family, previously studied only in vertebrates.

View Article and Find Full Text PDF
Article Synopsis
  • The CAPRI Round 46 involved 20 protein assembly targets, blending 14 homo-oligomers with 6 heterocomplexes, highlighting challenges in modeling.
  • A significant number of models (~2000 per target) were submitted by about 30 teams, with better performance seen in easier targets but struggles with complex compositions, as evidenced by only 3 out of 11 difficult targets yielding medium to high-quality models.
  • Analysis revealed a decline in prediction quality for binding interface residues compared to previous rounds, pointing to areas needing improvement for future challenges.
View Article and Find Full Text PDF

Centromeric nucleosomes are at the interface of the chromosome and the kinetochore that connects to spindle microtubules in mitosis. The core centromeric nucleosome complex (CCNC) harbors the histone H3 variant, CENP-A, and its binding proteins, CENP-C (through its central domain; CD) and CENP-N (through its N-terminal domain; NT). CENP-C can engage nucleosomes through two domains: the CD and the CENP-C motif (CM).

View Article and Find Full Text PDF

Integrative structure modeling computationally combines data from multiple sources of information with the aim of obtaining structural insights that are not revealed by any single approach alone. In the first part of this review, we survey the commonly used sources of structural information and the computational aspects of model building. Throughout the past decade, integrative modeling was applied to various biological systems, with a focus on large protein complexes.

View Article and Find Full Text PDF