Publications by authors named "Meral Ozsoyoglu"

In biomedical applications, network models are commonly used to represent interactions and higher-level associations among biological entities. Integrated analyses of these interaction and association data has proven useful in extracting knowledge, and generating novel hypotheses for biomedical research. However, since most datasets provide their own schema and query interface, opportunities for exploratory and integrative querying of disparate data are currently limited.

View Article and Find Full Text PDF

An important computation on pedigree data is the calculation of condensed identity coefficients, which provide a complete description of the degree of relatedness of two individuals. The applications of condensed identity coefficients range from genetic counseling to disease tracking. Condensed identity coefficients can be computed using linear combinations of generalized kinship coefficients for two, three, four individuals, and two pairs of individuals and there are recursive formulas for computing those generalized kinship coefficients (Karigl, 1981).

View Article and Find Full Text PDF

Comparing and identifying matching metabolites, reactions, and compartments in genome-scale reconstructed metabolic networks can be difficult due to inconsistent naming in different networks. In this paper, we propose metabolite and reaction matching techniques for matching metabolites and reactions in a given metabolic network to metabolites and reactions in another metabolic network. We employ a variety of techniques that include approximate string matching, similarity score functions and multi-step filtering techniques, all enhanced by a set of rules based on the underlying metabolic biochemistry.

View Article and Find Full Text PDF

Background: There are multiple representation formats for Systems Biology computational models, and the Systems Biology Markup Language (SBML) is one of the most widely used. SBML is used to capture, store, and distribute computational models by Systems Biology data sources (e.g.

View Article and Find Full Text PDF

A pedigree is a diagram of family relationships, and it is often used to determine the mode of inheritance (dominant, recessive, etc.) of genetic diseases. Along with rapidly growing knowledge of genetics and accumulation of genealogy information, pedigree data is becoming increasingly important.

View Article and Find Full Text PDF
Article Synopsis
  • The integration of metabolic pathways resources and regulatory models through platforms like PathCase-SB enhances systems biology research by making it easier to study metabolic network regulation.
  • PathCase-SB is a newly developed database providing various users with tools and data to create kinetic models of biological systems, utilizing resources from existing databases like BioModels and KEGG.
  • With its scalable architecture, PathCase-SB allows for quick access to data and is actively utilized by researchers worldwide, showcasing its relevance in the field.
View Article and Find Full Text PDF

Random forest is an ensemble classification algorithm. It performs well when most predictive variables are noisy and can be used when the number of variables is much larger than the number of observations. The use of bootstrap samples and restricted subsets of attributes makes it more powerful than simple ensembles of trees.

View Article and Find Full Text PDF

Until fairly recently, it was believed that essentially all human cells harbor two copies of each locus in the autosomal genome. However, studies have now shown that there are segments of the genome that are polymorphic with regard to genomic copy number. These copy number variations (CNVs) have a role in various diseases such as Alzheimer disease, Crohn's disease, autism and schizophrenia.

View Article and Find Full Text PDF

Copy number variants (CNVs) have roles in human disease, and DNA microarrays are important tools for identifying them. In this paper, we frame CNV identification as an objective function optimization problem. We apply our method to data from hundreds of samples, and demonstrate its ability to detect CNVs at a high level of sensitivity without sacrificing specificity.

View Article and Find Full Text PDF

With the rapidly expanding field of medical genetics and genetic counseling, genealogy information is becoming increasingly abundant. An important computation on pedigree data is the calculation of identity coefficients, which provide a complete description of the degree of relatedness of a pair of individuals. The areas of application of identity coefficients are numerous and diverse, from genetic counseling to disease tracking, and thus, the computation of identity coefficients merits special attention.

View Article and Find Full Text PDF

Motivation: As the blueprints of cellular actions, biological pathways characterize the roles of genomic entities in various cellular mechanisms, and as such, their availability, manipulation and queriability over the web is important to facilitate ongoing biological research.

Results: In this article, we present the new features of PathCase, a system to store, query, visualize and analyze metabolic pathways at different levels of genetic, molecular, biochemical and organismal detail. The new features include: (i) a web-based system with a new architecture, containing a server-side and a client-side, and promoting scalability, and flexible and easy adaptation of different pathway databases, (ii) an interactive client-side visualization tool for metabolic pathways, with powerful visualization capabilities, and with integrated gene and organism viewers, (iii) two distinct querying capabilities: an advanced querying interface for computer savvy users, and built-in queries for ease of use, that can be issued directly from pathway visualizations and (iv) a pathway functionality analysis tool.

View Article and Find Full Text PDF

With the rapidly expanding field of medical genetics and genetic counseling, genealogy information is becoming increasingly abundant. An important computation on pedigree data is the calculation of identity coefficients, which provide a complete description of the degree of relatedness of a pair of individuals. The areas of application of identity coefficients are numerous and diverse, from genetic counseling to disease tracking, and thus, the computation of identity coefficients merits special attention.

View Article and Find Full Text PDF

During the next phase of the Human Genome Project, research will focus on functional studies of attributing functions to genes, their regulatory elements, and other DNA sequences. To facilitate the use of genomic information in such studies, a new modeling perspective is needed to examine and study genome sequences in the context of many kinds of biological information. Pathways are the logical format for modeling and presenting such information in a manner that is familiar to biological researchers.

View Article and Find Full Text PDF