Publications by authors named "Menuz K"

Insects detect odorants using two large families of heteromeric receptors, the Odorant Receptors (ORs) and Ionotropic Receptors (IRs). Most OR and IR genes encode odorant-binding "tuning" subunits, whereas four (, , , and ) encode co-receptor subunits required for receptor function. Olfactory neurons are thought to degenerate in the absence of in ants and bees, and limited data suggest this may happen to some olfactory neurons in fruit flies as well.

View Article and Find Full Text PDF

olfactory neurons have long been thought to express only one chemosensory receptor gene family. There are two main olfactory receptor gene families in , the odorant receptors (ORs) and the ionotropic receptors (IRs). The dozens of odorant-binding receptors in each family require at least one co-receptor gene in order to function: for ORs, and , , and for IRs.

View Article and Find Full Text PDF

Two large families of olfactory receptors, the Odorant Receptors (ORs) and Ionotropic Receptors (IRs), mediate responses to most odors in the insect olfactory system. Individual odorant binding "tuning" OrX receptors are expressed by olfactory neurons in basiconic and trichoid sensilla and require the co-receptor Orco. The situation for IRs is more complex.

View Article and Find Full Text PDF

Members of the cytochrome p450 (CYP) enzyme family are abundantly expressed in insect olfactory tissues, where they are thought to act as Odorant Degrading Enzymes (ODEs). However, their contribution to olfactory signaling in vivo is poorly understood. This is due in part to the challenge of identifying which of the dozens of antennal-expressed CYPs might inactivate a given odorant.

View Article and Find Full Text PDF

Numerous hematophagous insects are attracted to ammonia, a volatile released in human sweat and breath. Low levels of ammonia also attract non-biting insects such as the genetic model organism Drosophila melanogaster and several species of agricultural pests. Two families of ligand-gated ion channels function as olfactory receptors in insects, and studies have linked ammonia sensitivity to a particular olfactory receptor in Drosophila.

View Article and Find Full Text PDF

Repellent odors are widely used to prevent insect-borne diseases, making it imperative to identify the conserved molecular underpinnings of their olfactory systems. Currently, little is known about the molecules supporting odor signaling beyond the odor receptors themselves. Most known molecules function in one of two classes of olfactory sensilla, single-walled or double-walled, which have differing morphology and odor response profiles.

View Article and Find Full Text PDF

Ammonia is both a building block and a breakdown product of amino acids and is found widely in the environment. The odor of ammonia is attractive to many insects, including insect vectors of disease. The olfactory response of Drosophila to ammonia has been studied in some detail, but the taste response has received remarkably little attention.

View Article and Find Full Text PDF

Many insect vectors of disease detect their hosts through olfactory cues, and thus it is of great interest to understand better how odors are encoded. However, little is known about the molecular underpinnings that support the unique function of coeloconic sensilla, an ancient and conserved class of sensilla that detect amines and acids, including components of human odor that are cues for many insect vectors. Here, we generate antennal transcriptome databases both for wild type Drosophila and for a mutant that lacks coeloconic sensilla.

View Article and Find Full Text PDF

Insects use taste to evaluate food, hosts, and mates. Drosophila has many "orphan" taste neurons that express no known taste receptors. The Ionotropic Receptor (IR) superfamily is best known for its role in olfaction, but virtually nothing is known about a clade of ∼35 members, the IR20a clade.

View Article and Find Full Text PDF

Diverse sensory organs, including mammalian taste buds and insect chemosensory sensilla, show a marked compartmentalization of receptor cells; however, the functional impact of this organization remains unclear. Here we show that compartmentalized Drosophila olfactory receptor neurons (ORNs) communicate with each other directly. The sustained response of one ORN is inhibited by the transient activation of a neighbouring ORN.

View Article and Find Full Text PDF

Remarkable advances in our understanding of olfactory perception have been made in recent years, including the discovery of new mechanisms of olfactory signaling and new principles of olfactory processing. Here, we discuss the insight that has been gained into the receptors, cells, and circuits that underlie the sense of smell.

View Article and Find Full Text PDF

Stargazer mice are characterized by ataxia and seizures, which resemble the human disorder absence epilepsy. Stargazin, the protein mutated in stargazer mice, promotes the expression and function of neuronal AMPA receptors (AMPARs). However, it is unclear how decreased expression of excitatory AMPARs generates stargazer seizures, given that seizures often result from increased neuronal excitability.

View Article and Find Full Text PDF

Transmembrane AMPA receptor regulatory proteins (TARPs) are AMPA receptor auxiliary subunits that influence diverse aspects of receptor function. However, the full complement of physiological roles for TARPs in vivo remains poorly understood. Here we find that double knock-out mice lacking TARPs gamma-2 and gamma-3 are profoundly ataxic and fail to thrive.

View Article and Find Full Text PDF

Transmembrane AMPA receptor regulatory proteins (TARPs), including gamma-2, gamma-3, gamma-4, and gamma-8, are auxiliary subunits for AMPA receptors. Based on studies in single knockout mice, it has been suggested that nearly all native AMPA receptors are associated with TARPs. To study the interplay between TARP family members and AMPA receptors in vivo, we generated mice lacking multiple TARPs.

View Article and Find Full Text PDF

Quinoxalinedione compounds such as 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) are the most commonly used alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists. However, we find that in the presence of transmembrane AMPA receptor regulatory proteins (TARPs), which are AMPA receptor auxiliary subunits, CNQX acts as a partial agonist. CNQX induced small depolarizing currents in neurons of the central nervous system, and reconstitution of this agonist activity required coexpression of TARPs.

View Article and Find Full Text PDF

Integrins are a large family of heterodimeric glycoproteins that play a crucial role in cell adhesion during development, inflammation, and tissue repair. In the current study, we investigated the localization of different integrin subunits in the mouse facial motor nucleus and their regulation after transection of the facial nerve. In the normal mouse brain, there was clear immunoreactivity for alpha5-, alpha6-, and beta1-integrin subunits on blood vessel endothelia and for alphaM- and beta2-subunits on resting parenchymal microglia.

View Article and Find Full Text PDF