Earth-abundant transition metal phosphide (TMP) nanomaterials have gained significant attention as potential replacements for Pt-based electrocatalysts in green energy applications, such as the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water splitting. In particular, FeP nanostructures exhibit superior electrical conductivity and high stability. Moreover, their diverse composition and unique crystal structures position FeP nanomaterials as emerging candidates for HER electrocatalysts.
View Article and Find Full Text PDFIron phosphide (FeP) nanoparticles have excellent properties such as fast charge transfer kinetics, high electrical conductivity, and high stability, making them a promising catalyst for hydrogen evolution reaction (HER). A challenge to the wide use of iron phosphide nanomaterials for this application is the available synthesis protocols that limit control over the resulting crystalline phase of the product. In this study, we report a method for synthesizing FeP through a solution-based process.
View Article and Find Full Text PDFHandmade papers (HPs) are fabricated from fibrous biomass of Lokta bushes and other plant species following traditional eco-friendly method in Nepal. Although HP fabricated from Lokta bushes is believed to be durable and resistant to bugs and molds, material properties of this paper are not reported in literature. In this study, we measured several material properties of 10 handmade Lokta paper samples collected from local enterprises and paper industries.
View Article and Find Full Text PDFNanowires and nanorods of magnetite (FeO) are of interest due to their varied biological applications but most importantly for their use as magnetic resonance imaging contrast agents. One-dimensional (1D) structures of magnetite, however, are more challenging to synthesize because the surface energy favors the formation of isotropic structures. Synthetic protocols can be dichotomous, producing either the 1D structure or the magnetite phase but not both.
View Article and Find Full Text PDFWe report a solution-based synthetic method to produce shape-tunable iron pyrite (FeS) nanocrystals using iron oxy-hydroxide (β-FeOOH) as a precursor and their application for selective reduction of functionalized nitroarenes to aniline derivatives with formic acid-triethylamine (HCOOH-EtN) as a hydrogen donor system.
View Article and Find Full Text PDF