Spectrochim Acta A Mol Biomol Spectrosc
February 2025
Disease modifying therapies including interferon-β (IFNβ) effectively counteract the inflammatory component in relapsing-remitting multiple sclerosis (RRMS) but this action, generally associated with severe side effects, does not prevent axonal/neuronal damages. Hence, axonal neuroprotection, which is pivotal for MS effective treatment, remains a difficult clinical challenge. Growing evidence suggested as promising candidate for neuroprotection, Emapunil (AC-5216) or XBD173, a ligand of the mitochondrial translocator protein highly expressed in glial cells and neurons.
View Article and Find Full Text PDFAmyloid-peptide (Aβ) monomeric forms (ABM) occurring in presymptomatic Alzheimer's disease (AD) brain are thought to be devoid of neurotoxicity while the transition/aggregation of ABM into oligomers is determinant for Aβ-induced toxicity since Aβ is predominantly monomeric up to 3 µM and aggregates over this concentration. However, recent imaging and/or histopathological investigations revealed alterations of myelin in prodromal AD brain in absence of aggregated Aβ oligomers, suggesting that ABM may induce toxicity in myelin-producing cells in early AD-stages. To check this hypothesis, here we studied ABM effects on the viability of the Human oligodendrocyte cell line (HOG), a reliable oligodendrocyte model producing myelin proteins.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
June 2024
Mature oligodendrocytes (OLs) arise from oligodendrocyte precursor cells that, in case of demyelination, are recruited at the lesion site to remyelinate the axons and therefore restore the transmission of nerve impulses. It has been widely documented that exogenously administered steroid molecules are potent inducers of myelination. However, little is known about how neurosteroids produced de novo by OLs can impact this process.
View Article and Find Full Text PDFXanthurenic acid (XA) raises a growing multidisciplinary interest based upon its oxidizing properties, its ability to complex certain metal ions, and its detoxifier capacity of 3-hydroxykynurenine (3-HK), its brain precursor. However, little is still known about the role and mechanisms of action of XA in the central nervous system (CNS). Therefore, many research groups have recently investigated XA and its central functions extensively.
View Article and Find Full Text PDFThe brain and spinal cord (SC) are both targeted by various hormones, including steroid hormones. However, investigations of the modulatory role of hormones on neurobiological functions usually focus only on the brain. The SC received little attention although this structure pivotally controls motor and sensory functions.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurodegenerative disorder with neuronal and synaptic losses due to the accumulation of toxic amyloid β (Αβ) peptide oligomers, plaques, and tangles containing tau (tubulin-associated unit) protein. While familial AD is caused by specific mutations, the sporadic disease is more common and appears to result from a complex chronic brain neuroinflammation with mitochondriopathies, inducing free radicals' accumulation. In aged brain, mutations in DNA and several unfolded proteins participate in a chronic amyloidosis response with a toxic effect on myelin sheath and axons, leading to cognitive deficits and dementia.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) resulting in demyelination and neurodegeneration. The therapeutic strategy is now largely based on reducing inflammation with immunosuppressive drugs. Unfortunately, when disease progression is observed, no drug offers neuroprotection apart from its anti-inflammatory effect.
View Article and Find Full Text PDFNeuromyelitis optica spectrum disorder (NMOSD) and multiple sclerosis (MS) are both autoimmune inflammatory and demyelinating diseases of the central nervous system. NMOSD is a highly disabling disease and rapid introduction of the appropriate treatment at the acute phase is crucial to prevent sequelae. Specific criteria were established in 2015 and provide keys to distinguish NMOSD and MS.
View Article and Find Full Text PDFMultiple sclerosis (MS) is an autoimmune and demyelinating disease of the central nervous system (CNS) caused by CNS infiltration of peripheral immune cells, immune-mediated attack of the myelin sheath, neuroinflammation, and/or axonal/neuronal dysfunctions. Some drugs are available to cope with relapsing-remitting MS (RRMS) but there is no therapy for the primary progressive MS (PPMS). Because growing evidence supports a regulatory role of the translocator protein (TSPO) in neuroinflammatory, demyelinating, and neurodegenerative processes, we investigated the therapeutic potential of phenylindolyilglyoxylamydes (PIGAs) TSPO ligands in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) mice mimicking the human PPMS.
View Article and Find Full Text PDFLong QT syndrome is one of the most common hereditary channelopathies inducing fatal arrhythmias and sudden cardiac death. We identified in a sudden arrhythmic death syndrome case a C-term mutation (c.3457C > T; p.
View Article and Find Full Text PDFHemes have been suggested to play a central role in Alzheimer's disease since they show high peroxidase reactivity when bound to amyloid β peptides, leading to the production of reactive oxygen species. Here we used Fourier transform infrared and Raman imaging on Alzheimer's diseased mice and human brain tissue. Our finding suggests the accumulation of hemes in the senile plaques of both murine and human samples.
View Article and Find Full Text PDFXanthurenic acid (XA) is a metabolite of the kynurenine pathway (KP) synthetized in the brain from dietary or microbial tryptophan that crosses the blood-brain barrier through carrier-mediated transport. XA and kynurenic acid (KYNA) are two structurally related compounds of KP occurring at micromolar concentrations in the CNS and suspected to modulate some pathophysiological mechanisms of neuropsychiatric and/or neurodegenerative diseases. Particularly, various data including XA cerebral distribution (from 1 µM in olfactory bulbs and cerebellum to 0.
View Article and Find Full Text PDFMicroglial cells are key players in neural pathogenesis and microglial function regulation appears to be pivotal in controlling neuroinflammatory/neurological diseases. Here, we investigated the effects and mechanism of action of neurosteroid allopregnanolone (ALLO) on murine microglial BV-2 cells and primary microglia in order to determine ALLO-induced immunomodulatory potential and to provide new insights for the development of both natural and safe neuroprotective strategies targeting microglia. Indeed, ALLO-treatment is increasingly suggested as beneficial in various models of neurological disorders but the underlying mechanisms have not been elucidated.
View Article and Find Full Text PDFBackground: Central nervous system damage in multiple sclerosis (MS) is responsible for serious deficiencies. Current therapies are focused on the treatment of inflammation; however, there is an urgent need for innovative therapies promoting neuroregeneration, particularly myelin repair. It is demonstrated that testosterone can act through neural androgen receptors and several clinical observations stimulated an interest in the potential protective effects of testosterone treatment for MS.
View Article and Find Full Text PDFAmong several processes, a decrease in amyloid-beta (Aβ) peptide elimination is thought to be one of the major pathophysiological factors in Alzheimer's disease (AD). Neprilysin (NEP) is a key metalloproteinase controlling the degradation and clearance of Aβ peptides in the brain. NEP is induced by several pharmacological substances, amyloid deposits and somatostatin, but the physiological regulation of its expression remains unclear.
View Article and Find Full Text PDFNeoadjuvant chemotherapy is beneficial against breast cancer, but its toxicity causes painful chemotherapy-induced neuropathy which decreases seriously patients' quality of life. Development of effective therapy is crucial because current treatments are unsatisfactory. While animal models have previously been produced to test therapeutics against chemotherapy-induced neuropathy, neuropathic pain evoked by the frequently used neoadjuvant-chemotherapy involving sequentially epirubicin and docetaxel has never been modeled.
View Article and Find Full Text PDFCurrent treatments in multiple sclerosis (MS) are modulating the inflammatory component of the disease, but no drugs are currently available to repair lesions. Our study identifies in MS patients the overexpression of Plexin-A1, the signalling receptor of the oligodendrocyte inhibitor Semaphorin 3A. Using a novel type of peptidic antagonist, we showed the possibility to counteract the Sema3A inhibitory effect on oligodendrocyte migration and differentiation in vitro when antagonizing Plexin-A1.
View Article and Find Full Text PDFComplex mechanisms involved in neuropathic pain that represents a major health concern make its management complicated. Because neurosteroids are bioactive steroids endogenously synthesized in the nervous system, including in pain pathways, they appear relevant to develop effective treatments against neuropathic pain. Neurosteroids act in paracrine or autocrine manner through genomic mechanisms and/or via membrane receptors of neurotransmitters that pivotally modulate pain sensation.
View Article and Find Full Text PDFThe challenging diagnosis and differentiation between multiple sclerosis and amyotrophic lateral sclerosis relies on the clinical assessment of the symptoms along with magnetic resonance imaging and sampling cerebrospinal fluid for the search of biomarkers for either disease. Despite the progress made in imaging techniques and biomarker identification, misdiagnosis still occurs. Here we used 2.
View Article and Find Full Text PDFJ Alzheimers Dis
December 2020
Translocator protein 18 kDa (TSPO) is located in the mitochondrial outer membrane and plays an important role in steroidogenesis and cell survival. In the central nervous system (CNS), its expression is upregulated in neuropathologies such as Alzheimer's disease (AD). Previously, we demonstrated that two new TSPO ligands based on an imidazoquinazolinone termed 2a and 2b, stimulated pregnenolone synthesis and ATP production in vitro.
View Article and Find Full Text PDFBackground: Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an autoimmune-mediated inflammatory disease of the peripheral nervous system characterized by a response directed against certain myelin proteins and for which therapies are limited. Previous studies have suggested a beneficial role of FTY720, a sphingosine 1-phosphate (S1P) receptor agonist, known to deplete lymphocytes from the peripheral blood by sequestering them into lymph nodes, in the treatment of experimental autoimmune neuritis (EAN). Therefore, we investigated whether FTY720 is also beneficial in chronic experimental autoimmune neuritis (c-EAN), a recently developed rat model mimicking human CIDP.
View Article and Find Full Text PDFSerotoninergic activation which decreases brain Aβ peptides is considered beneficial in mouse models for Alzheimer's disease (AD), but the mechanisms involved remain unclear. Because growing evidence suggested that the stimulation of proteases digesting Aβ, especially the endopeptidase neprilysin (NEP) may be effective for AD therapy/prevention, we explored the involvement of serotonin precursors and derivatives in NEP regulation. We found that 5-hydroxyindolacetic acid (5-HIAA), the final metabolite of serotonin, considered until now as a dead-end and inactive product of serotonin catabolism, significantly reduces brain Aβ in the transgenic APPSWE mouse model for AD-related Aβ pathology and in the phosphoramidon-induced cerebral NEP inhibition mouse model.
View Article and Find Full Text PDFChemotherapeutic drugs induce various side effects including painful peripheral neuropathy that represents a major concern. The widely used anticancer drug paclitaxel causes neurological side effects such as burning pain, allodynia, and hyperalgesia. Neuroprotective substances that may effectively counteract paclitaxel-induced neuropathic symptoms are needed.
View Article and Find Full Text PDFIn the last decades, an active and stimulating area of research has been devoted to explore the role of neuroactive steroids in pain modulation. Despite challenges, these studies have clearly contributed to unravel the multiple and complex actions and potential mechanisms underlying steroid effects in several experimental conditions that mimic human chronic pain states. Based on the available data, this review focuses mainly on progesterone and its reduced derivative allopregnanolone (also called 3α,5α-tetrahydroprogesterone) which have been shown to prevent or even reverse the complex maladaptive changes and pain behaviors that arise in the nervous system after injury or disease.
View Article and Find Full Text PDFProteolipid protein (PLP) mutation causes oligodendrocyte degeneration and myelin disorders including Pelizaeus-Merzbacher Disease (PMD). As the pathophysiological mechanisms involved in PMD are poorly known, the development of therapies remains difficult. To elucidate the pathogenic pathways, an immortalized oligodendroglial cell line (158JP) expressing PLP mutation has been generated.
View Article and Find Full Text PDF