Background And Objectives: Although multiple sclerosis (MS) can be conceptualized as a network disorder, brain network analyses typically require advanced MRI sequences not commonly acquired in clinical practice. Using conventional MRI, we assessed cross-sectional and longitudinal structural disconnection and morphometric similarity networks in people with MS (pwMS), along with their relationship with clinical disability.
Methods: In this longitudinal monocentric study, 3T structural MRI of pwMS and healthy controls (HC) was retrospectively analyzed.
Cognitive impairment (CI) in multiple sclerosis (MS) is only partially explained by whole-brain volume measures, but independent component analysis (ICA) can extract regional patterns of damage in grey matter (GM) or white matter (WM) that have proven more closely associated with CI. Pathology in GM and WM occurs in parallel, and so patterns can span both. This study assessed whether joint-ICA of GM and WM features better explained cognitive function compared to single-tissue ICA.
View Article and Find Full Text PDFDisruptions to brain networks, measured using structural (sMRI), diffusion (dMRI), or functional (fMRI) MRI, have been shown in people with multiple sclerosis (PwMS), highlighting the relevance of regions in the core of the connectome but yielding mixed results depending on the studied connectivity domain. Using a multilayer network approach, we integrated these three modalities to portray an enriched representation of the brain's core-periphery organization and explore its alterations in PwMS. In this retrospective cross-sectional study, we selected PwMS and healthy controls with complete multimodal brain MRI acquisitions from 13 European centers within the MAGNIMS network.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a neurodegenerative disease that affects the central nervous system. Structures affected in MS include the corpus callosum, connecting the hemispheres. Studies have shown that in mammalian brains, structural connectivity is organized according to a conservation principle, an inverse relationship between intra- and interhemispheric connectivity.
View Article and Find Full Text PDFObjective: To assess the interrelationship between cortical lesions and cortical thinning and volume loss in people with multiple sclerosis within cortical networks, and how this relates to future cognition.
Methods: In this longitudinal study, 230 people with multiple sclerosis and 60 healthy controls underwent 3 Tesla MRI at baseline and neuropsychological assessment at baseline and 5-year follow-up. Cortical regions (N = 212) were divided into seven functional networks.
Objective: To quantify alterations in soma and neurite density imaging measures within and surrounding cortical lesions in people with multiple sclerosis using in vivo high-gradient diffusion MRI.
Methods: In this cross-sectional study, 41 people with multiple sclerosis and 34 age- and sex-matched healthy controls underwent 3 T high-gradient diffusion MRI. Cortical lesions were segmented on artificial intelligence-enabled double inversion recovery images.
Background And Objectives: In multiple sclerosis (MS), brain reserve serves as a protective factor against cognitive impairment. Previous research has suggested a structural counterpart in the spine-spinal cord reserve-seemed to be associated with physical disability. This study aimed to investigate the potential of the cervical canal area (CCaA) as a proxy for spinal cord reserve in a multicentric cohort of people with MS (PwMS).
View Article and Find Full Text PDFImportance: Increasing numbers of people with multiple sclerosis (MS) use disease-modifying therapy (DMT). Long-term stable disease while taking such medications provides a rationale for considering DMT discontinuation given patient burden, costs, and potential adverse effects of immunomodulating therapy.
Objective: To investigate whether first-line DMT can be safely discontinued in patients with long-term stable MS.
Background: Literature on the intricate relationship between self-reported and objectively assessed cognitive functioning suggests a discrepancy between self-reported cognitive complaints (SCC) and actual test performance.
Objectives: To investigate the interplay between patient-reported outcome measures (PROMs) and objective cognitive functioning using network analysis in people with multiple sclerosis (PwMS).
Methods: We collected PROMs on anxiety, depression, fatigue and SCC, and cognitive functioning across six domains ( = 703 PwMS; 71% female, mean age = 46.
Background And Objectives: Disentangling brain aging from disease-related neurodegeneration in patients with multiple sclerosis (PwMS) is increasingly topical. The brain-age paradigm offers a window into this problem but may miss disease-specific effects. In this study, we investigated whether a disease-specific model might complement the brain-age gap (BAG) by capturing aspects unique to MS.
View Article and Find Full Text PDFBackground: Multiple sclerosis (MS) is characterized by extensive tissue damage leading to a range of complex symptoms, including physical disability and cognitive dysfunction. Recent work has indicated the clinical relevance of bioactive lipid mediators (LMs), which are known to orchestrate inflammation and its resolution and are deregulated in MS. However, it is unknown whether LM profiles relate to white matter (WM) damage.
View Article and Find Full Text PDFBackground: Substantial physical-disability worsening in relapsing-remitting multiple sclerosis (RRMS) occurs outside of clinically recorded relapse. This phenomenon, termed progression independent of relapse activity (PIRA), is yet to be established for cognitive decline.
Methods: Retrospective analysis of RRMS patients.
Biol Psychiatry Cogn Neurosci Neuroimaging
November 2024
Background: Anti-NMDA receptor encephalitis (NMDARE) causes long-lasting cognitive deficits associated with altered functional connectivity. Eigenvector centrality (EC) mapping represents a powerful new method for data-driven voxelwise and time-resolved estimation of network importance-beyond changes in classical static functional connectivity.
Methods: To assess changes in functional brain network organization, we applied EC mapping in 73 patients with NMDARE and 73 matched healthy control participants.
Mult Scler Relat Disord
September 2024
Background: Because secondary progressive multiple sclerosis (SPMS) is associated with worse prognosis, early predictive tools are needed. We aimed to use systematic literature review and advanced methods to create and validate a clinical tool for estimating individual patient risk of transition to SPMS over five years.
Methods: Data from the Jacobs Multiple Sclerosis Center (JMSC) and the Multiple Sclerosis Center Amsterdam (MSCA) was collected between 1994 and 2022.
Background: Digital monitoring of people with multiple sclerosis (PwMS) using smartphone-based monitoring tools is a promising method to assess disease activity and progression.
Objective: To study cross-sectional and longitudinal associations between active and passive digital monitoring parameters and MRI volume measures in PwMS.
Methods: In this prospective study, 92 PwMS were included.
Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease of the central nervous system, commonly featuring disability and cognitive impairment. The pathologic hallmark of MS lies in demyelination and hence impaired structural and functional neuronal pathways. Recent studies have shown that MS shows extensive structural disconnection of key network hub areas like the thalamus, combined with a functional network reorganization that can mostly be related to poorer clinical functioning.
View Article and Find Full Text PDFBackground: Robust predictive models of clinical impairment and worsening in multiple sclerosis (MS) are needed to identify patients at risk and optimize treatment strategies.
Objective: To evaluate whether machine learning (ML) methods can classify clinical impairment and predict worsening in people with MS (pwMS) and, if so, which combination of clinical and magnetic resonance imaging (MRI) features and ML algorithm is optimal.
Methods: We used baseline clinical and structural MRI data from two MS cohorts (Berlin: n = 125, Amsterdam: n = 330) to evaluate the capability of five ML models in classifying clinical impairment at baseline and predicting future clinical worsening over a follow-up of 2 and 5 years.
Background: Cortical lesion subtypes' occurrence and distribution across networks may shed light on cognitive impairment (CI) in multiple sclerosis (MS).
Methods: In 332 people with MS, lesions were classified as intracortical, leukocortical or juxtacortical based on artificially generated double inversion-recovery images.
Results: CI-related leukocortical lesion count increases were greatest within sensorimotor and cognitive networks ( < 0.
Objective: To evaluate the intrinsic and extrinsic microstructural factors contributing to atrophy within individual thalamic subregions in multiple sclerosis using in vivo high-gradient diffusion MRI.
Methods: In this cross-sectional study, 41 people with multiple sclerosis and 34 age and sex-matched healthy controls underwent 3T MRI with up to 300 mT/m gradients using a multi-shell diffusion protocol consisting of eight b-values and diffusion time of 19 ms. Each thalamus was parcellated into 25 subregions for volume determination and diffusion metric estimation.
Neuroimage Clin
June 2024
Background: Prior research has established a link between thalamic pathology and cognitive impairment (CI) in people with multiple sclerosis (pwMS). However, the translation of these findings to pwMS in everyday clinical settings has been insufficient.
Objective: To assess which global and/or thalamic imaging biomarkers can be used to identify pwMS at risk for CI and cognitive worsening (CW) in a real-world setting.
Blood-level oxygenation-dependent (BOLD) functional magnetic resonance imaging (fMRI) is the most common modality to study functional connectivity in the human brain. Most research to date has focused on connectivity between pairs of brain regions. However, attention has recently turned towards connectivity involving more than two regions, that is, higher-order connectivity.
View Article and Find Full Text PDF