Publications by authors named "Menno J De Jong"

The blue whale is an endangered and globally distributed species of baleen whale with multiple described subspecies, including the morphologically and genetically distinct pygmy blue whale. North Atlantic and North Pacific populations, however, are currently regarded as a single subspecies despite being separated by continental land masses and acoustic call differences. To determine the degree of isolation among the Northern Hemisphere populations, 14 North Pacific and 6 Western Australian blue whale nuclear and mitochondrial genomes were sequenced and analysed together with 11 publicly available North Atlantic blue whale genomes.

View Article and Find Full Text PDF

Half a century after its foundation, the neutral theory of molecular evolution continues to attract controversy. The debate has been hampered by the coexistence of different interpretations of the core proposition of the neutral theory, the 'neutral mutation-random drift' hypothesis. In this review, we trace the origins of these ambiguities and suggest potential solutions.

View Article and Find Full Text PDF

Permeable phylogeographic barriers characterize the vast open ocean, boosting gene flow and counteracting population differentiation and speciation of widely distributed and migratory species. However, many widely distributed species consists of distinct populations throughout their distribution, evidencing that our understanding of how the marine environment triggers population and species divergence are insufficient. The sailfish is a circumtropical and highly migratory billfish that inhabits warm and productive areas.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used advanced SNP analysis to examine the genetic differentiation, finding that the Mediterranean population likely formed around the last glacial maximum and experienced significant demographic changes, especially a decline in population size.
  • * Results indicate distinct genetic structures between the Mediterranean's eastern and western basins, influenced by historical gene flow, which raises conservation concerns and highlights the need for tailored strategies to protect these populations.
View Article and Find Full Text PDF

Population-genomic studies can shed new light on the effect of past demographic processes on contemporary population structure. We reassessed phylogeographical patterns of a classic model species of postglacial recolonisation, the brown bear (Ursus arctos), using a range-wide resequencing dataset of 128 nuclear genomes. In sharp contrast to the erratic geographical distribution of mtDNA and Y-chromosomal haplotypes, autosomal and X-chromosomal multi-locus datasets indicate that brown bear population structure is largely explained by recent population connectivity.

View Article and Find Full Text PDF

Despite increasing sequencing efforts, numerous fish families still lack a reference genome, which complicates genetic research. One such understudied family is the sand lances (Ammodytidae, literally: "sand burrower"), a globally distributed clade of over 30 fish species that tend to avoid tidal currents by burrowing into the sand. Here, we present the first annotated chromosome-level genome assembly of the great sand eel (Hyperoplus lanceolatus).

View Article and Find Full Text PDF

Background: The majority of structural variation in genomes is caused by insertions of transposable elements (TEs). In mammalian genomes, the main TE fraction is made up of autonomous and non-autonomous non-LTR retrotransposons commonly known as LINEs and SINEs (Long and Short Interspersed Nuclear Elements). Here we present one of the first population-level analysis of TE insertions in a non-model organism, the giraffe.

View Article and Find Full Text PDF

Founder populations are of special interest to both evolutionary and conservation biologists, but the detection of genetic signals of selection in these populations is challenging due to their demographic history. Geographically separated founder populations likely to have been subjected to similar selection pressures provide an ideal but rare opportunity to overcome these challenges. Here we take advantage of such a situation generated when small, isolated founder populations of reindeer were established on the island of South Georgia, and using this system we look for empirical evidence of selection overcoming strong genetic drift.

View Article and Find Full Text PDF

SNP data sets can be used to infer a wealth of information about natural populations, including information about their structure, genetic diversity, and the presence of loci under selection. However, SNP data analysis can be a time-consuming and challenging process, not in the least because at present many different software packages are needed to execute and depict the wide variety of mainstream population-genetic analyses. Here, we present SambaR, an integrative and user-friendly R package which automates and simplifies quality control and population-genetic analyses of biallelic SNP data sets.

View Article and Find Full Text PDF

Species that evolved in temperate regions during the Pleistocene experienced periods of extreme climatic transitions. Consequent population fragmentation and dynamics had the potential to generate small, isolated populations where the influence of genetic drift would be expected to be strong. We use comparative genomics to assess the evolutionary influence of historical demographics and natural selection through a series of transitions associated with the formation of the genus Capreolus, speciation within this genus during the Quaternary and during divergence among European roe deer (C.

View Article and Find Full Text PDF