Background: In abdominal aortic aneurysm (AAA), pathophysiology deterioration of the medial aortic layer plays a critical role. Key players in vessel wall degeneration are reactive oxygen species (ROS), smooth muscle cell apoptosis, and extracellular matrix degeneration by matrix metalloproteinase-9 (MMP-9). Lipocalin-2, also neutrophil gelatinase-associated lipocalin (NGAL), is suggested to be involved in these degenerative processes in other cardiovascular diseases.
View Article and Find Full Text PDFBackground: The natural course of abdominal aortic aneurysms (AAA) is growth and rupture if left untreated. Numerous markers have been investigated; however, none are broadly acknowledged. Our aim was to identify potential prognostic markers for AAA growth and rupture.
View Article and Find Full Text PDFThe pathophysiology of aortic aneurysms (AA) is far from being understood. One reason for this lack of understanding is basic research being constrained to fixated cells or isolated cell cultures, by which cell-to-cell and cell-to-matrix communications are missed. We present a new, in vitro method for extended preservation of aortic wall sections to study pathophysiological processes.
View Article and Find Full Text PDFBackground: Marfan syndrome (MFS), a congenital connective tissue disorder leading to aortic aneurysm development, is caused by fibrillin-1 (FBN1) gene mutations. Transforming growth factor beta (TGF-β) might play a role in the pathogenesis. It is still a matter of discussion if and how TGF-β up-regulates the intracellular downstream pathway, although TGF-β receptor 3 (TGFBR3 or Betaglycan) is thought to be involved.
View Article and Find Full Text PDFOpen surgical repair of an aortic aneurysm requires aortic cross-clamping, resulting in temporary ischemia of all organs and tissues supplied by the aorta distal to the clamp. Major complications of open aneurysm repair due to aortic cross-clamping include renal ischemia-reperfusion injury and postoperative colonic ischemia in case of supra- and infrarenal aortic aneurysm repair. Ischemia-reperfusion injury results in excessive production of reactive oxygen species and in oxidative stress, which can lead to multiple organ failure.
View Article and Find Full Text PDFBackground: Extracellular matrix degeneration, caused by matrix metalloproteinase-2, facilitates smooth muscle cell migration leading to medial layer decline and, ultimately, abdominal aortic aneurysm. It remains unclear what exactly causes aneurysms to rupture, which leads to death in most patients. The extracellular signal-related kinase may be linked to the latter process.
View Article and Find Full Text PDF