Publications by authors named "Menka Petkovska"

The intensification of an electrochemical process by forced periodic operation was studied for the first time using the computer-aided Nonlinear Frequency Response method. This method enabled the automatic generation of frequency response functions and the DC components (Faradaic rectification) of the cost (overpotential) and benefit (current density) indicators. The case study, oxygen reduction reaction, was investigated both experimentally and theoretically.

View Article and Find Full Text PDF

This paper demonstrates an experimental application of the nonlinear frequency response (FR) method extension to determine adsorption isotherms of binary mixtures. This method, based on the analysis of the response of a chromatographic column subjected to the sinusoidal inlet concentration changes, is shown to be an alternative for isotherm determination. The critical issue related to the successful application of the method is to reach experimentally the low frequency asymptotic behaviour of the corresponding frequency response functions (FRFs).

View Article and Find Full Text PDF

In this work adsorption equilibria of binary mixtures are quantified analyzing the nonlinear frequency response of a chromatographic column. Local partial derivatives of an isotherm model can be estimated for certain steady-states from the low frequency asymptotes of the corresponding frequency response functions (FRFs). The required FRFs correspond to two different compounds and the type of the imposed inlet concentration changes, e.

View Article and Find Full Text PDF

In order to estimate single solute adsorption isotherms, the nonlinear frequency response (FR) of a chromatographic column is analyzed experimentally and evaluated using the concept of higher order frequency response functions (FRFs) based on the Volterra series and generalized Fourier transform. In this case study, it has been investigated the adsorption of ethyl benzoate on octadecyl silica from a mixture of methanol and water (60:40) as a solvent. Experiments are performed using a standard gradient HPLC unit.

View Article and Find Full Text PDF