Publications by authors named "Mengze Ma"

To evaluate the feasibility of acquiring vertebral height from chest low-dose computed tomography (LDCT) images using an artificial intelligence (AI) system based on 3D U-Net vertebral segmentation technology and the correlation and features of vertebral morphology with sex and age of the Chinese population. Patients who underwent chest LDCT between September 2020 and April 2023 were enrolled. The Altman and Pearson's correlation analyses were used to compare the correlation and consistency between the AI software and manual measurement of vertebral height.

View Article and Find Full Text PDF

The occurrence of rheumatoid arthritis (RA) is highly correlated with progressive and irreversible damage of articular cartilage and continuous inflammatory response. Here, inspired by the unique structure of synovial lipid-hyaluronic acid (HA) complex, we developed supramolecular HA-nanomedicine hydrogels for RA treatment by mediating macrophage-synovial fibroblast cross-talk through locally sustained release of celastrol (CEL). Molecular dynamics simulation confirmed that HA conjugated with hydrophobic segments could interspersed into the CEL-loaded [poly(ε-caprolactone--1,4,8-trioxa[4.

View Article and Find Full Text PDF

The vascularization of bone repair materials is one of the key issues that urgently need to be addressed in the process of bone repair. The changes in macrophage phenotype and function play an important role in the process of vascularization, and endowing bone repair materials with immune regulatory characteristics to enhance angiogenesis is undoubtedly a new strategy to improve the effectiveness of bone repair. In order to improve the effect of tricalcium phosphate (TCP) on vascularization and bone repair, we doped strontium ions (Sr) into TCP (SrTCP) and prepared porous 3D printed SrTCP scaffolds using 3D printing technology, and studied the scaffold mediated macrophage polarization and subsequent vascularization and bone regeneration.

View Article and Find Full Text PDF

CCL21, a secondary lymphoid tissue chemokine, plays an important role in generating an effective anti-tumor immune response. In this study, a genetically modified CCL21 was developed by inserting a pH low insertion peptide to establish a CCL21-rich microenvironment for tumors. The fusion tag thioredoxin (Trx) was designed and fused at the N-terminal of the recombinant protein to protect it from being irrevocably misfolded in microbial host cells.

View Article and Find Full Text PDF

The three types of silica supported sulfuric acids (SSA), with the same sulfuric acid loading of 9.25 mmol g, were prepared by a wet impregnation method from silica gel (SG), SBA-15 and MCM-41. Characterization of the prepared SSA showed that two anchoring states coexisted for sulfuric acid supported on the surface of the silicas: A physiosorbed (P)-state sulfuric acid; and a chemically bonded (C)-state sulfuric acid.

View Article and Find Full Text PDF

Polymerized ionic copolymers have recently evolved as a new class of materials to overcome the limited range of mechanical properties of ionic homopolymers. In this paper, we investigate the structural and mechanical properties of charged ionic homopolymers and di-block copolymers, while using coarse-grained molecular dynamics simulation. Tensile and compressive deformation are applied to the homopolymers and copolymers in the glassy state.

View Article and Find Full Text PDF

It is well-known that the nature and size of the counterions affect the ionic conductivity and glass transition temperature of ionic polymers in a significant manner. However, the microscopic origin of the underlying changes in the dynamics of chains and counterions is far from completely understood. Using coarse-grained molecular dynamics simulations of flexible and semi-flexible ionic polymers, we demonstrate that the glass transition temperature of ionic polymeric melts depends on the size of monovalent counterions in a non-monotonic manner.

View Article and Find Full Text PDF